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1

I. INTRODUCTION TO THE NUMERICAL SOLUTION OF

ECONOMIC GROWTH MODELS

During the past three decades much interest has been
dirécted towards problems of decision making in physical,
economic or organizational systems.’ This interest has been
motivated primarily by the important economic beﬁefits which
result from correct decisions concerning the allocation and
distribution of costly, limited resourccs. Also it has been
inspired by the repeated demonutration that cuch models can
be realistically formulated and mathemalically analyzed to
obtain pood decinions. A third reason for this {rend is the
arrival of high-speed digital computers which play such an
important role in the development -of large systems and the
coupling of previously separate systems, thereby resulting
in decision and control problems of increased complexity.
The computer has rendered certain techniques obsoclete while
making other previously impractical methods feasible and
efficient.

Let us examine what is meant by the concept of "best"
or "optimal™ decision. An approach one may uuse is where a
single, rcal valued functional summarizing the performance or
value of a decision, is isolated and optimized (either maxi-
mized or minimized depending on the model), by proper selec-

tion among &vailable alternatives. The resulting optimal



vector is taken to be the solution to the decision problem.

A transformation from a véctor space X into the space
of real or complex scalars is said to be a functional on X.
Real valuedAfunctiQnals are of direct interest to optimiza-
tion theory since optimization consists of selecting a vector
from a given space to minimize or maximize a given func-
tional.

To facilitate communication in formulating the problem

we can classify models into four mutually nonexclusive classes.

(1) Deterministic Model--neither the exogenous variables
(determined outside the system), nor the endogenous
variables (determined within the model), nor the
parameters of the model are allowed to be random
variables.

(2) Stochastic Mbdels-—at least one of the operating
characteristics of the model is a probability den-
sity function.

(3) Static Models--neither the variables of the model
nor the parameters take time into account.

(4) Dynamic Models--deal with time varying interaction
of variables and/or the parameters of the model.

The equations describing the decision model may be de--

terministic or stochastic, and may be complicated from a
mathematical point of view. However, the performance index

has a simple underlying structure.



oplimive V X,V ,a) .

{x}
X ¢ X, ye Yand a e A .

f: XxY¥YxA->R .

x = Vector that can be controlled and affects
V . .

y = Vector that cannot bie controlled and
affects V.

a = Vector of parameters that affeets V.
f = Real valued functional.

The problem then is to find values of the ccntrolled
variables which optimize the performance index subject to
the restrictions given.

A solution may be obtained either by (1) mathematical
analysis, (2) numerical approximation, or (3) conducting ex-
periment:s on the model (simulation).

This approach of formulating decision problems has the
virtue of simplicity and precision but it also has the limi-
tation due to the necessity of selecting a single objective
by wnhich 10 measure results. h

Let us now focus on the specific problem of interest,
that is intertemporal optimization. Here we have the gen-
eral problem of choosing functions from function spaces that
will optimize a given functional and aluo satisfy differential

or difference equations, initial and/or boundar)y conditions



and possibly other constraints.

Much of the classical theory of dynamic or iatertemporal
optimization was motivated by problems in physics and in the
calculus of variations (h?)._ Ansociated with these results
arc mathcmaticians, Gauss, luler, Laprange and others. Much
of" the carly work was in obtaining necesnary conditions for
the solution of the problem. This approach of the classical
calculus of variation was to transform the given optimization
problem into another problem, namely, the Euler-Lagrange equa-
tion. The function that optimizes the funcfional also sat-
isfies the Euler-Lagrange equation. However, in most.cases
the Euler-Lagrange equation turned out to be a ncnlinear two
point boundary value problem. For a large system this by
itself is a highly formidable mathematical problem.

During recent developments of optimization in decision
problems, the clascical mcthodsvhavc been re-cxamined, ex-
tended sometimes rediscovered and applied to problems having
quite different origin than those responsible for earlier
development. Some illustrations of these applications would
be in optimal economic growth models. For example, in any
economic unit choices must be made between provisions for
the present (consumption) and provisions for the future
(capital accumulation). While more consumption is preferable
Lo leos at sy moment in time, more consumpl ion means less

capital accumulation.  'T'he smaller the capital accumulation,
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the smaller the future output of the econoﬁio unit and
therefore the smaller future potential consumption. Thus a
choice must be made between alternative consumption poli-
cies. At one extreme is the policy of consuming as much
today even though the potential for future consumption is
Jjeopardized. At the other extreme is the poliecy of consum-
ing, only a subsistence today so as to increase capital and
the potential for future consumption. The choices made over
time between conusumption and capital accumulation generate

a set of time paths for consumption, capltal, and output for
the economic unit. Many growth paths are possible and to
choose one of them, one must select an appropriate index of
performance for the unit in question. Once this judgment
‘has been made, one faces the problem of choosing an optimal
feasible growth path, that is the problem of.optimal eco-
nomic growtﬁ. This problem can be considered as a problem
of intertemporal optimization.

The solution to the problem is not simple and perhaps
cannot be attained cven i1f one defines and [inds 1t. Yet it
does seem helpful to have a clear picture of the optimal
time path as a gulde to the directions in which policies may
be modified. Given the technical possibilities, the planners
can by varying the time path of investments, vary the time
path of con:sumption per capifta.

As Avrow and Kurz ( 3) and Uzawa (72) point out in an



economy that is not centrally planned, the problem of optimal
economic prowth is that of choosing appropriate mixtures of
existing policy controls, such as monetary and fiscal poliey,
to attain the desired objective. More will be said about
this idea in a 1ater~section

If the planners have a quantitative and unagmbiguous set
of valuations of the time path of consumption, then by com-
paring the integral of valuations for any situation, they
can obtain a measure of which is better. Hence the problem
is to formulate and solve an optimal control problem

The problem can be formulated by taking the state of
the system by some state vector x(t) and taking the evolution
of the economic syétem with respect to time by the dynamic

equations,

x = £f(x,u,t) , x(t ) =x h(x(tf))‘= 0o .
o)

o °?

ueV , X === . (1.1)

(1.2)

where u(t) is a vector of controls or instruments and V a
set of admissible controls. Each state vector is assumed to

be a continuous function of time, so the trajectory

fx(t)} = {(x(t)eR" | £t <t <t}

o) £



is a continuous vector function of time. At any time t in

the relevant interval, the choices to be made are character-
ized by r real numbgrs ul(t), u2(t), cees ur(t) called control
variables and summarized by the control vector. Each control
variable is required to be a piecewise continuous function

of time so the control vector

fu(t)} = {u(t)eR" | t_ <t < t.}

o — - °f

is a piecewine continuous vector valued funetion. The con-

trol variables may be chosen subject to certain constraints

on thelr possibl¢ values, summarized by the restrictioh that

the control vector at all times in the relevant interval must

belong to a given nonempty subset of R': u(t)eVv, to <t < tf;
One can take the preferences of those in the system

to form the integral performance functional,

.
Eo= fon(x,u,t)de + B(x(t.)) . (1.3)

t
0

Where L i a utility function and @ 13 a terminal "bequest
function" and [to,tf] represents the planning horizoh. Given
this general structure (in either discrete or continuous
form) one readily observes that the selection of an appropri-
ate economic policy to maximize E is precisely a problem in
optimal control.

An exanple would be where a centrally orgarized decision



making body select patterns of production and investment
which would generate a set of time paths of sectoral growth
to optimize an index of welfare for the complete economic
unit. This type of problem determines the optimal alloca-
tion of investment between sectors at any point in time and
the optimal time path_of consumption.

One can further classify growth models into two prin-
cipal classes.

1. Consistency models--models by which one‘attempts
to choose a pattern of resource allocation among various sec-
tors of the economy which is consistent with a given set of
"targets" given for the end of the planning horizon.

2. Optimal models--models designed to find the best
by means of optimizing a utility functional of different
time paths of resource allocation over the planning horizon.

In the optimal control models, one has the following
elements: (a) performance functional, (b) a dynamic model
containing some variables appearing in the criterion func-
fional‘and (c) a subset of the model variables which can be
controlled. |

In solving control problems of optimal economic growth
one has the goal of finding a decision rule for determining
the present control decision subject to certain constraints
that will either minimize the deviation from some ideal be-

havior or that will maximize the functional consisting of a



utility function of certain system variables. The perform-
ance index is important because it, to a'lafge‘measure; de-
termines the nature of the resulting optimal control vector.
It is.highly desirable that the index of performance'originaté

not from a mathematical, but from an applicatiohal point of

view. However in certain cases this choicé involves compro-:
misen boeltween a meaningful cvaluation of the system and a
tractable mathemat ieal problem.

PDilliculties in choosing or constructing an aggregate
utility function are recognized. These same problems élso-
apply in obtaining a performance functional. Let us assume
that we can construct a collection of such utility functions
each possessing various properties and proceed from that
point to determine sensitivity measures of how the control
policy changes with respect to dhanges in structural features
of the model.

The nature and difficulty of the mentioned control prob-
lems vary considerably, depending upon the kinds of informa-
tion, and structure available in the following interrelated
categories:

1. Performance index, initial state, desired final
state of the model and the planning time horizon.

2. -Characteristics and structural features of the
dynamical sstem equations of the model. |

3. Characteristics of the allowable contrcl and state
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vectors and the nature of the constraints on them.

b, TPermissible interaction between controls.and the
system equations and the solutions.

In the past decade the theory of optimal control has ob-
tained theoretical tools such as Pontryagin's Maximum Prin-
ciplé (58) (called minimum principle by many American
authors; 47, 12) dynamic programming (5) and such numerical
techniques as will be discussed later to approximate the
solution to optimal control problems, given the necessary
information for the model.

The question of how the optimal state and control tra-
.jectories change with respect to changes in certain features.
of the problem when one or more parts of key structural in-
forﬁation takes on various values is sftudied later.

The analysis is in the form of numerical experimenta-
tion dealing with nonlinear models under various economic
hypotheses about the models. The solutions obtained will
be numerical trajectories computed using recently developed
numerical algorithms to solve optimal control nroblems,

Frank Ramsey (60) considered a neoclassical model of

production where the optimal trajectory of capital accumu-

lation maximive:s the intepgral over time of the utilities of
pelr eapita consumplion.,
Extensions or elaborations of neoclannical oplimal

growth modeis have been compiled by Karl Shell (67) and an
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extemsive bibliopraphy given by Dobell (21), Burmeister and
Dobell (13). Yreatment is also given by Arrow and Kurz (3)
and Uzawa (72). Computation of the optimal paths was not
the objective of Shell and associates, Arrow and Kurz or
Uzawa. Rather they were_concerned with the qualiitative
analysis of the solution by using Pontryagin's Maximum
Principle (58). They analyzed conditions for the existence
of optimal control time paths and the asymptotic properties
of such paths. They do not specify any computing sequence
or procedures to numerically solve the optimal growth models
considered, but rather analyze the steady state solutions
and thelr economic meanings.

'hese theoretical models were designed to analyze the
characteristics of any économy in asymptotic optimal growth.
One of my objectiﬁes is to develop and solve numerically
certain finite horizon optimizing growth models which allow
the specification of production and welfare relationships
in a nonlinear form and thereby analyze some properties of
such models.

Deterministic opltimal growth models may be divided into
two piroups:  apprepative and dicsappgrepative.  The approegative
models arce pencrally based on the assumption of a single sce-
tor. The disaggregative models seek to specify the relative
rates of growth for several interdependent sectors of an

economy. Aa intermediate case bétween the two types of
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growth models 1s provided by intersectoral models, where
the different sectors are completely independent or sub-
stantially so.

There exists a wide variety of economic growth models
having different degrees of disaggregation, different levels
of dynamic relationships and possibly different policy im-
plications. The choice between alternative models presents
a difficult task, especially if one's interest is in apply-
ing some of the current growth theory to planning and de- |
velopment. Some critical areas include the various linkages
which exist between an aggregate model and its disaggregated
version and also the implication of certain types of balanced
growth which may have an oscillatory tendency.

In Chapter 16 of his book, Morishima (52) treats a
model and conditions réquired for the simultaneous optimiza-
tion of capital accumulation and population growth. He
emphasizes among other things the potential danger of cyclical
oscillation in per capita consumption and output in turnpike
models of long-run economic growth.

Operational planning models based on specific policy
formulations relating to economic growth and stabilization
for development planning have been considered by various
authors. One may mention the planning and programming models
for countries such as the Netherlands (14, 15), Norway (7).,

at different levels of formulation and actual application and
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other models formalized by Chenery and Bfuno'(l?), Lange
(42), Mahalanobis (48), Klein (40, 41) and others.

Generally development planning models are concerned
with economic growth within a medium.or long range time
horizon. Policy models are usually formulated for short
term stabilization purposes, often within a growth framework.

| Planning methods specify the role of planning in achiev-
ing economic objectives. TPlanning models without any control
are generally cither a linear or nonlinear programming prob-
lem within an input-output framework. A numﬁer of things
are required to be fixed in the model and hence their effects
on the optimal solution cannot be determined. Some of these
include the time horizon and terminal constraints on various
state variables. There is no possibility of updating and
modifying the solution and no test of sensitivity in a com-
plete sense.

Planning with control as in a control problem usiné
penalty functions to handle terminal constraints allows one
to adjust the time horizons, the terminal constraints and to
determine sensitivity measures on these parts of the model.
One can solve such control problems numerically that may be
~analytically intractable in terms of elementary functions.

One can mention some reasons for giving thought to
dynamic economic models in a frame of reference of optimal

control theory. Tn a centrally-planned cconomy the planners
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have a direct influence on the time paths and Chafacter of
economic growth and may wish to have the benefit of economic
analysis in wielding that influence. Also one needs a ref-
erence to which ofher possible time paths may be compared.

It may be useful to have as that bench mark an optimal path
with respect to certain indices of‘performance. In addition,
one notes that in the individual enterprise economies, the
main determinant of savings and hence investment are thé de-
sires of business firms to control their survival and growth
by internal financing (accumulation of capital), and the con-
cern of individuals with their support in old age and with
the economic opportunities of their children. Even in these
economies, povernments have a considerable influence on sav-
ings and on other aspects of economic growth. Thus the same
consideration as [irst mentioned applies there also. Dis-
tribution problems between individuals 1iving at the same
time are ignored.

Many feasible time paths are possible in a growth prob-
lem. One way to compare such feasible paths is to construct
appropriate measures of performance and frame the problem in
a control problem format. Also comparisons can be made in
terms of the squared deviation from a given desired trajectory
subject to the conotraints of the dynamics of the model.
Computation of optimal control also allows one to cxamine

pousible feedback relations where the control ve:tor is a
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function of the state vector over a given horizon.

A‘second reason is the success of control theory~in
fields other than economics (4, 12). In the last few years
many new algorithms have been developed for the computation
of control problems (44, 70, 1, 53). Insight gained using
these algorithﬁs on small economic models may giveiinsight
to the analysis of larger more cbmplex models and to the
féasibility of using such algorithms on large planning models.
A comparison of the optimal time paths to the trajectories
generated using feedback and simulation is also needed.
Computation of small economic models serves'to reveal sen-
sitive pérameters in the model.

Consider the economic meaning of the Lagrange multi--

pliers in the general classical programming problem.
maximize F(x) , subject to g(x) = p , (1.4)
where

L(x,2) = F(x) + i[b-g(x)] . (1.5)

X e R ,geRm

n>nm

F : R® + R

g : R? - g™
m



16
The Lagrange multipliers at the optimal solution measure the

sensitivity of the optimal values of the objective function

¥ = F(x¥) to variations in the constraint constants b.

)\*=3_F_i . .

1 abi i=1,2,...,m . (1.6)
For example, if any Lagrange multiplier were equal to Zero

at the optimal solution, then umall cﬁanges in the corres-
‘ponding constraint constant would not affect the optimal
values of the objective function. For problems of economic
allocation in which the objective function has the dimension
of value, and the constraints specify a certain value for a
given quantity, the Lagrange multiplier measures the sensi-
tivity of a value to changes in a quantity and hence a price,

often called a shadow price.

Given the nonlinear programming problem,

- max "(x) subjeect to m(x) <b , x >0 . (1.7)

The Lagrange multipliers can be interpreted.as in the

the classical programming problem,

% P
A, = ag i=l,...,m. (1.8)

i

=t
(o2

To the extent that objective functional has the dimen-
sion of an economic value and the state variable has the

dimension oY an cconomic quantity, then the adjoint variable
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in a control pfoblem has the dimension of a price, a shadow
price. This interpretation of the adjoint variable ié the
dynamic analogue to the interpretation of the Lagrange mul-
tiplier for static optimization problems (36).

The implication of a time path of shadow_pfices in the
control problem and the indirect control through price guid—
ance is a topic of interest. That the market place solves
the economic problem of equating supply and demand by suc-
cessive approximation using feedback to the equilibrating
price or prices in a familiar concept. 1In a single market,
cach approximation results in naming a price and calculating
the difference between supply and demand at that price. The
next approximation involves adjusting the previous trial
price in a manner governed by the difference, with the idea
of causing the‘difference to vanish.

Lange (43) points out an important limitation of the
market is that it treats the accounting problems only in
static terms. It does not provide a sufficient foundation
for the solution of growth and development problems. In
particular it does not provide an adequate basis for long-
term planning. Ifor planning, economic development, long-~term
investments have to be taken out of the market mechanism and
based on judgment of developmental economic policy. This is
because present prices reflect present data, where as invest-

ment changes: data by creating new technical conditions for
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production and frequently also by creating new wants. In-.
vestment changes the conditions for supply and demand which
determine equilibrium prices. |

The theory and practice of time staged mathematical
programming makes it possible to introduce cconomic acéount-
ing into this process. After setting up an objeétive func-
tion and certain constraints, future shadow prices can‘be
computed. These shadow prices may serve as an instrument of
economic accounting in development plans. Actual market
equilibrium prices do not suffice here, knowledge.of the com-
puted future shadow prices is needed. Here computation does
not replace the market, but possib;y it may fulfill a fﬁnction
which the market never was able to perform.

Since welfare economics assures us that under certain
assumptions (2) as to the utility function and productive
process a competitive equilibrium can be identified with an
economic optimum, it appears that the method of successive
approximations which solves the problem of market equilibrium
is also a computational method for solving the problem of
opftimal resource allocation. An interesting question to
consider then would be, "is the reverse true? Does solving
the problem of intertemporal optimal resource allocation,
generate the time paths of prices?" Certainly for a large
cconomic sy:stem a completely centralized organization would

require storage capacity and processing that exceeds anything
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likely to be available. Thus a reason for the computation of
optimal economic growth models would be to analyze and study
the above question for small economic systems. If the adjoint
variables are prices, how does the market mechanism and a
'central planning process compare with regard to respective
transaction costs and iteration costs, information processing
.and computation. 1s the convergence of the control theory
algorithm analogous to the convergence of the market mechan-
ism? Some of these questions may be studied by the computa-
tion of small models.

For a growth model to be considered operational it.must
explain the observed process of growth of an economy by means
of a set of quantitative variables so that the empiricﬁl
realism of the model may be tesfed. In addition it must con-
tain a set of variables amenable to control by one or é set
of policy makers such that the observed process of growth may
be influenced by the contreol variables to converge to an
optimal process of growth when the optimality condition is
defined in some meaningful economic sense. An economic mean-
ing of the computation of growth models would be to show that
the model is operational. This would also give an indication
of the feasibility of handling large complex mbdels through
the same procedure--that of system analysis applied to plan-
ning models in a frame of reference of optimal control.

Numerical analysis conuiderations of the meaning of the
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computation would include: 1. determination of a numeri-
cal solution which could not have been obtained analyti-
cally, 2..comparison of the effectiveness of the conprol
algorithms used, 3. indication of the convergence.properties
of the control algorithms and an approximate measure of
their cost, 4. indication of the sensitivity to errors in
the computational process by the algorithms considered,

bH. comparison of how the alporithms respond to penalty func-
tion formulation Lo handle terminal constraints on the

state variables.

As indicated Shell (67) did not, as mentioned, perform
computation on the models that were studied. They were
concerned with qualitétive analysis only. My objective is
to consider two problems that were not there explored.

FPirst I consider the problem.of how to actually pe;form
the numerical computation of such models. The difficulties
of the procedures involved in this computation, and the
feasibility of using control theory algorithms to solve such
economic models is treated. Also considered is the treatment
of what time paths can be realized with respect to various
parameter settings of the model. In addition the effect of
using penalty functions to handle terminél constraints is
studied. In the computational progedure one can obtaih an
approximate cost measure on the algorithm in terms of the .

number of iterations required to converge to a satisfactory
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solufipn and the amount of eompuﬁétion pef'iteration.i I
utilize thevcoﬁjugate gradient algorithm and the Davidon
algorithm. Penalty functions are used to handle terminal
constraints on the state variables.. By using different -
algorithms in the control probiem computation, 6ne obtains
an indication'of which algorithm performs better. Speed of
convergence to the optimal solution is generally dependent
upon the algorithm used. -

When one applles these models, certain‘empirical prob-
lems need to be consiﬁered. Among these are some of the
followiﬁé}- Policy makers and planners have certain pref-
erences which generate various desired values of the control
variables. For éxample as treated in ijiri (35), planﬁers
may consider planning as the procéss of decomposing given
economic goa1s into a seﬁ of subgoals which are more oper-
ational and controllable than the maln goals. The planning
process then becomes one which ié directed towards.deriving
a set of subgoals that will collectively achieve the giyen
goals. The central problem becomes: How does one measure
performance in the subunit or subgoal to determine performance
| in terms of a given goal? |

In tragitional theory a planner is supposed to be an
optimizer, This should not be completely equated to the
idea of "rationality" since.requisite degrees of knowledge

may be abuvent, for instance when uncertainty is present. It
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may then be "rational"™ to be a "satisficier" (49) and thereb&
proceed "rationally" towards goals that he sets for himself
or others rather than seek an optimum.

Suppose that one has a subunit model within a given con-
trol or noncontrol framework. This submodel problem is
solved to obtain an optimal control vector u¥(t) for the sub-
unit. One could then use this u¥(t) as a desired time path
in the aggregative complete model, where the index of per-
formance is the squared deviation from the subunit optimal

path and the dynamics reflect the complete model constraints.

t

f
minimize J, = f (u - u*)zdt . (1.9)
o
x = g(x,u,t) . (1.10)
x(0) = X, s x(tf) = X . (1.11)

This suboptimization procedure allows a compromise re-
sult to obtain a solution close to the desired path. If
the index of performance is larger then a given tolerance,
one may sacrifice some in the subunit and modify the subunit
control time path u¥(t) and then repeat the process.

This procedure allows for trade offs between the com-
plete control model and subunit models. Computation of such
a problem is undertaken in Chapter 3B and 3C to provide in-

sight into the feasibility of such a decomposition procedure.
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Both deterministic and stochastic simulation are also util-
Tved ans well o the control problem alporithm appronch.

Gher wayé in which the desired path may be determined
include treating the desired path as a constant, say con-
sumption per worker éubsistence level, with or without a time
trend. Sengupta and Walker (66) used as the known desired
path a subsistence level of consumption required for the
t th year which is a funcﬁion of thé size of the population.

Desired path

C¥ = C m————})(t)

B P(B) ?

where P(t) is the population as a function of time, B is a
given base year and CB is the level of consumption for the
base year B.

" If the objective of the study is a stability analysis
and one wishes to have the output'of the economic unit main-
tained close to a desired trajectory, then the desired path
may be a predetermined constant level of (P, again possibly
with a time trend. Vanden Bogaard and Theil (73) used the
desired output in stability studies, Y¥ = (CB)(I.S)(lﬂt)t
where o i the presumed net birth rate.

Another possibility for the desired time path would be
obtained by not considering the objective functional and
eliminating the excess degrees of freedom in the system

dynamics by assuming that the control variables are functions
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of the state variables. The differential system may then
be solved and the control variables can be computéd and
used as desired values for an optimal model. One could

- begin by assuming simple feedback relations to obtain fthe
desired paths.

Also implicit in applying economic models is the prob-
lem of the sensitivity of the model parameters, that is,
how the optimal time paths change with respect to changes
in the model parameters. Many times the parameters are
statistical estimates. Sen (63) and Chakravarty (16) have
studied thié problem for speclal one sector models with
linear dynamics which admitted analytical solutions. Their
investigation was on three main political elements in the
formulation of the economic model in terms of maximizing the
sum of utilities within a finite horizon; (1) the choice of
a utility function, (2) the choice of a time horizon, and
(3) the choice of the terminal stock of capital. The first
of these is a part of any optimizing program. The latter
two result [from restricting the period to a finite time
horizon. - Finite time horizons fit easily into the con-
venience of planning and the question is not one of a com-
plete break with the future, since the terminal stock of
capital provides an adjustable link between the period with—
in the horizon and the period beyond. One could argue that

if problem (3) is well solved, the arbitrariness of (2)
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could be eliminated. The previously mentioned authors

studied this problem;

t
£
maximize F = [ e Plyc(e)as . (1.12)
o
subject to K = bg(t) - c(t) (1.13)
K(o) = K0 and K(tf) = Ko (1.14)
K(t) = aggregate stock of capital,
C(t) = aggregate flow of consumption,

b

output-capital ratio
U(C(t)) = utility function = [C(t) - C*¥(t)]%,
C#¥ = given subsistence level.

The terminal stock Kf is computed from various growth
rates g of capital over the time horizon.

Chakravarty (16) using t,=20, b=1/3, a=.l4 concluded
by analyzing the various time path data that the best con-
sumption profiles are insensitive to changes in g within
the range [.05, .15]. He simply compared the numerical
values of the ﬁrajectories for different growth rates.

Sen (63) found that for g e[.15, .325] the consumption
profiles are highly sensitive to the growth rate of the
capital stock. He defined an over-subsistence consumption

function x(t) = C(t) - C¥(t) and a "sensitivity indicator",



n, as follows:

|dx(0) / x(0)
/|

This indicator was used to analyze the sensitivity of the
trajectories. |

Another reason for the consideration of the computa-
tional aspect of the optimal growth economic model would
be so that orne could analyze models which have nonlinear-
ities in the system dynamics and also time varying produc-
tion functions. Sensitivity studies as mentioned above
could then be analyzed on nonlinear, time varying problems.

Problems of control are associated with dynamic sys-
tems evolving in time. Control or guidance refers to di-
rected influence on a dynamic system to achieve a desired
performance. A small number of interesting, nonlinear dy-
namic optimization problems can be completely resolVed
analytically by using techniques of 1. Calculus of Vafia-
tions (32) or 2. Pontryagin's Maximum Principle (58).
However, the great majority of dynamic optimization prob-
lems must ultimately be solved by computer methods. The
reason for this is not that the necessary conditions for
optimality are difficult to derive, but rather that the
solution of the resulting nonlinear equations is usually
beyond analytic tractability.

There are two basic approaches for resolving complex



dynamic oplimization problems by numerical technliques:

1. PFormulate the necessary conditions describing the.
optimal solution and solve these equations numer-
ically usually by‘some iterative scheme.

2. Bypass the forﬁulation of the necessary conditions
and implement a direct éearch for the optimum.

Although the field of optimal control has received much

specialized attention in recent years, it cannot be dis-
associated from the noncontrol branches of optimization such
as linear programming, nonlinear programming, and the cal-
culus of variations. These noncontrol branches of optimi-
zation theory have contributed greatly to the development

of iterative techniques for solving the control problem.

The terms direct and indirect are frequently used to clas-
sify the many numerical techniques that have been used.
Indirect methods are those which attempt to produce the
optimal control by satisfying the necessary conditions for
optimality obtained from the calculus of variations or from
Pontryagin's Maximum Principle. In general, the application
of these necessary conditions leads to a two-point boundary
value problem. Most indirect methods, as a result, are
characterized by an iterative modification of either the
boundary conditions or the differential equations.

In contrast, direct methods are those that select

successive trial control functions based on information
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obtained from the value of the functional and its gradient
for. previous control choices. The methods usually require.
the choice of an initial control function which.is used to
determine a direction of search in the space of allowable
control functions. The control change is the product;of
the direction of search vector aﬁd a scalar called the
search direction parameter or search direction stepsize.
From the control function, a new direction of search is def '
termined, and the process is repeated. The various direct
methods differ mainly in the means used to determine the
successive directions of search and the magnitude of the
control stepsize taken in those directions. The conjugate
direction methods are direct solution algorithms.

The class of numerical techniques called conjugate
direction methods combine the computational simplicity of
the gradient techniques with the rapid convergence prop-
erties typical of second-order techniques. These methods
do not require the computation of second-order partial
derivatives in determining the direction of search. The
improved direction of search results from the assumption
that the objective function can be approximated by a quad-
ratic function in the neighborhood of the current search
point. The properties of the quadratic function are used
implicitly in the derivation of the methods to produce di-

rections of search that are superior to the negative
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gradient directions. Two such procedures, the conjugate
gradient and the Davidon method, will be discussed in
later sections.

In the general case of nonlinear systems with non-
quadratic performance criteria, the specification of opti-
mal control requires the solution of 2 n simultaneous first
order differential equations for an nth order system with
mixed boundary values. It represents a difficult problem
in numerical analysis because the coupled equations are
usually highly unstable.

In the next chapter some of the basic concepts as-
sociated with various numerical control algorithm pro-
cedures will be considered. The question of existence and
uniqueness of an optimal control in what follows is avoided
here, as in most numerical treatments, by assuming that a

unique optimal control exists.
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IT. NUMERICAL PROCEDURES FOR SOLVING
OPTIMAL CONTROL PROBLEMS

A. Introduction

The development and use of the numerical methods of
mathematical optimization is important Lo many scientific
disciblines. As indicated in Chapter 1, an interest, many
times, to the management scientist and economist is to a
part of optimization referred to as optimal control. This
field has received much interest in recent years, but is
integrally associated with other optimization areas such as
linear and nonlinear programming and the calculus of varia-
tions.

This chapter treats a class of iteration techniques for
solving the control problem. First the gradient technique
is presented. Steepest descent is perhaps the oldest direct
method of minimizing an objective function of several vari-
ables. The procedure is based on the principle of éhoosing
a trial solution that lies along the direction of maximum
decrease of the objective function from the previous itera-
tion. The question of stepsigze in the direction of search
is important--~very small stepsizes are impractical and in-
efficient, while large stepsizes lead to convergence prob-
lems. Curry (19) éuggested that from each point in the

search, the negative gradient direction is to be followed



by a one dimensional minimization of the objective function
"to determine the optimal stepsize for the next iteration.
With that procedure implemented the gradient method becomes
a useful computational method. Bryson and Denham (10, 11)
and Kelley (39) extended the use of steepest descent to func-
tion spaces. These and other authors have incorporated
methods for handling terminal state constraints and certain
state space and control variable constraints.

Second order direct methods of solving optimal éontrol
problems have been developed by Bregkwell, Speyer and
Bryson (8) and others. These techniques are extensions of
Newton's method for minimizing a function of several vari-
ables. A quadratic function of n variables can be minimized
in one step if the search direction is taken to be the nega-
tive gradient direction premultiplied by the inverse Hessian
matrir. If the objective function is globally convex, the
inverse Hesslan matrix evaluated at the search point gives
additional second order information for new search direc-
tion that leads to faster convergence than the gradient
method. Newton's method gives faster convergence at a cost
of the evaluation of the inverse Hessian matrix at each
step. In addition, if the Hessian matrix is not positive
definite everywhere in the search space, Newton's method may
not converge at all. Newton's method extensions to function

space will not be treated in this chapter, but they have
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been used to solve control problems (12, 50).

Second-order methods possessvrapid convergence near the
minimum, but they require greater computational effort than
do first order procedures. In addition for starting values
far from the minimum in certain problems, they may not con-
verge at all. Two computational techniques that have the
efficienty and computational simplicity of first order meth-
ods but exhibit convergence properties approaching those of
the second order methods will then be treated in Sections C
and D of this chapter. These procedures like the first and
second order techniques have their oripgins in finite dimeh—
sional algorithms and are called the conjugate gradient and
Davidon method.

Basically, the improved directions of search results
from the assumption that the objective function can be ap-
proximated by a quadratic function in the neighborhood of
the current search point. The properties of the quadratic
function are used in the derivation of the methods to pro-
duce directions of search superior to the negative gradient
directions.

Hestenes and Stiefel (33) published the conjugate prad-
ient method as a technique to solve a system of linear al-
gebraic equations. Fletcher and Reeves (26) used the con-
"jugate gradient procedure to minimize a function of several

variables, or equivalently, to solve a set of nonlinear
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equations. Davidon (20) published anothér conjugate direc;
tion method sﬁch that when applied to a quadratic function
sequentially constructs a matrix which approaches the inverse
Hessian matrix. The directions of search chosen are the
negative pradient directions prgmultiplied by the Davidon
welphting, matrix. He called the procedure é variablé metric
method, but now it usually is referred to by his name.
Fletcher and Powell (25) improved the original version and
published computational results. Many others have written
about these algoriﬁhms. Beckman (5) for one, presented an
explanation of the conjugate gradient method.

As in the case of the gradient method.and Newton's
method, both the conjugate gradient and Davidon's method
have been extended to apply to functionals on a suitable
function space. Hayes (31) extended the method in 195.4.
Mehra and Bryson (51), Lasdon et al. (45); Sinnott and
Luenberger (68) have also extended and generalized the
conjugate gradient method. Willoughby (71) has published
computational results of the conjugate gradient algorithm
to certain special problems. Tripathi and Narendra (70),
Lasdon (44), Adachi et al. (1) have made extensions of the
Davidon algorithm to function spaces. The contributions
of many of these authors will be treated in latef sections.

After treatment of the conjugate gradient and Davidon

alporithm to continuous control problems, some other aspects
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of computing will be considered, such au discrete versions
of the problem and a discrete version of the control problem
treated by Bruno (9). His treatment of a linear economic
growth model leads to a type of algorithm where one approxi—'
mates the adjoint variables at the initial time and then
improves the estimate by an iteration procedure relating
linear programming and the dual linear program.

A serious question that arises in a computer based
study is whether to formulate and work with a continuous
of a discrete time model. One inevitably has to discretize
problems for digital computer solutions. The control prob-
lem will be formulated first in continuous time and later
in discrete time.

My purpose here is to develop and analyze methods as
useful tools for solving the following deterministic con-
tinuous optimal control problem.

Consider a dynamical system, described by the system of

nonlinear differential equations,

x(t) = F(x,u,t) , £ : Rotr+l , gn (2.1)

where x(t) is an n x 1 state vector and u(t) is anr x 1

control vector. A performance index,

te
E= [ L(xut)dt , A (2.2)

tO



35

+r+
is specified where L is defined as: L : R Tl + R. Tt

is assumed that the time interval [to’tF] is fixed and that
the state x(to) is specifiled. In addition the system nay

have inequality and/or terminal constraints given by:

h(x(t.)) = 0 g : RUTTYL | gs (2.3)

g(x,u,t) >0 . (2.4)

In certain problems the terminal state constraints will be
absent and these will be known as free end problems. One
seeks a control u¥(t) such that:

a. u¥(t) and the corresponding trajectory x¥(t) min-
imize the performance index E, satisfy the dif--
ferential system (Equation 2.1) and initial con-
dition and,

b. the resulting final state x*(tf) satisfies Equa-~
tion 2.3 (part b may not be present in free end
problems),

c. u¥(t) and x¥(t) satisfy Equation 2.4 (part c may
not be present in certain problems).

We assume that:

1. f(x,u,t) and L(x,u,t) are continuous functions of
their arguments and that the first partial deriva-
tives of f and the first and second partials of L
with respect to x and u are continuous and that,

2. a unique solution u¥(t) exists.



In the following I discuss n and r vector functions of
. R n r
time in the Hilbert spaces, L2[to,tf] and L2[to,tf]. A
Hilbert space is a complete normed linear space equipped -
with an inner product which induces the norm. The inner

product of interest is given by

[x(t) | y(£)1 = |

xT(t)y(t)dt (2.5)
o .

where 1 indicates the transpose. The notation LX will de-
note the row vector of partial derivatives of L(x,u,t).
The symbol fx where £ is an n-vector indicates an n x n
matrix of partial derivatives as does Lxx' The symbol fu

represents an n x r matrix.

B. Gradient Method in Function Space

One of the most reliable methods is to decouple the
unstable system, integrate n equations forward in time and
n equations backward in time. Then maximize the Hamiltonian
function H at each time'interval using a gradient of H to
improve the estimate of the control vector u(t). This
algorithm is good for achieving an approximate solution, but
final convergence may be intolerably slow. The notation
i = 1(1)n denotes that the index i starts at 1 = 1 and is
ineremented by 1 until i = n.

Consider the system of differential equations
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ii(t) = fi(x,u,t) s xi(to) = xoi s, 1=1(1)n

(2.6)
where fi . ATl > R, where x(t) is the n x 1 state vector-
and u(t) is the r x 1 control vector and t is the independent
variable time. The performance criterion is the integfal,

te

E=[ L(x,u,t)dt . (2.7)

%

We now define the Hamiltonian function as follows,

H(x,u,p,t) = -L(x,u,t) +
i

I~

. pi(t)fi(x,u,t) . (2.8)

The adjoint system of equations is specified as,
ﬁi(t)}= - %%T (x,usp,t) i=1(1)n . (2.9)
s :
Pontryagin's Maximum Principle (58) provides a neces-
sary condition that a specific control u¥(t) is optimal.
It states that a control input u(t) which minimizes the
performance criterion E, maximizes the Hamiltonian func-
tion H. Rather than providing a direct solution to the
optimal control problem, the maximum principle produces the
result in terms of the solution of another set of differ-
ential equations. By maximizing H a relation between u(t),
p(t) and x(t) can be generated. Hence the systems 2.6 and
2.9 can be solved, if the necessary initial condition and

boundary condition can be determined. Whether the system
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2.9 of differential equations in terms of the auxiliéry
variables p = (pl...pn)T can be solved depends upon the
existence of initial conditions for the system 2.9. Also
the coupling between the state equatidns and the aﬁxiliary
equations affects the ability to solve the differential
equation system 2.9. The initial and final conditions aré
usually known for the state variables, but are often not
known for the auxiliary variables. Therefore a two-point
boundary value problem may result in solving the system
2.6 and 2.9.

Let us consider first the free end point problem with no
inequality constraints for which the boundary values on the

adjoint vector p(t) are given as:

p;(tp) =0 | i=1(1)n . (2.10)

The actual algorithm would proceed as follows:

a. Select an initial control time vector as a first
estimate of u(t). |

b. Numerically integrate the system 2.0 forward from
t, to tf and store the state vector x(t).

¢c. Integrate the adjoint system 2.9 in reverse time
from tf to to using the boundary condition described by
Equation 2.10.

d. At each step of the reverse integration the

estimate of u(t) is improved according to
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W) py o u(k)_(t) ooy —:—E— (x(£),ut® (£),p(5) ,5)

ay > 0 (2.11)

in such a manner as to maximize H at all times by a steepest
ascent procedure. The constant Oy must be determined by an
independent search procedure. E can be calculated for dif-
ferent values of % and then a polynomial fit méde to de-
termine the value of o which minimizes E to be used in the
next iteration.

e. Return to step b and repeat the procedure until a

aH

specified convergence criterion on u(t), e or E is satis~

fied. -
Several variations of the method can be used. If the
problem is not a free end point problem, one can define a
penalty function and reformulate the problem such that all
of the final state variables are free end problems. The

performance index is redefined as,

1

E¥ = E + = Ki(xi(tf) - E&)g (2.12)

o
N 3

i=1

where the terminal constraints are

xy (tp) = X ' i=1(1)n . (2.13)

A minimum of E¥ is now determined without requiring the
terminal values of the state variables to satisfy constraints

2.13 exactly>, but instead to require that a "penalty" be
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paid for any deviation from the terminal values.
With the mentioned modificatlion, one can then use the
previous algorithm with the part ¢ (conditions on pi(t))

replaced by the following conditlons:
'pi<tf> = f;f(i’?’l = Ky(xy(tp) = X)) . (2.14)
i

The trajectories x(t) and u(t) which minimize E* are
close tq the trajectories which minimize E subjJect to the
specified end point conditions.

The principal advantage of the gradient method 1s that
convergence is not contingent upon a good initial estimate
of the control trajectory. One 1s assured that the value
of the functional fo be minimized 1is decreased at each
succeeding iteration. Some disadvantages are that the con-
vergence, although relatively good in the beginning of the
iterative sequence; often deteriorétes severely as the
optimum trajectory 1s approached. Also the penalty func-
tion method required to solve problems with specifled ter-~
minal conditions introduces arbitrary constants Ki which
are required to be "large" at least for the final iteration.
If the constants are chosen too large at any point in the
iteration cycle, the new control will tend to lmprove the
specified terminal values without much weight being placed
on improving the actual functional to be minimized. If the

constants Ki are too small, the terminal conditions will not
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be satisfied. Thus in practice, the success of the method
if there are terminal constraints depends upon judicilous
choices of the penalty constants.Ki. In Section A of
Chapter 3 a report is given on my experience with the use
of penalty functions for handling terminal state con-l
straints. -

At this point I would like to clarify a notational
procedure used in certain subsequent sections and by many
American authors (47, 12). This involves a slight change
in the statement of the necessary conditions for the control
problem 2.6—2.7. Multiplying the Hamiltonian Equation 2.8

by (~1), one obtains,

n
-H(x,u,p,t) = L(x,u,t) + ¢

. (-pi(t))fi(x,u,t)

1
(2.15)

Now by redefining the adjoint variables,
A3 (8) = =py (%) 1=1(1)n ,

the following relationship is determined,

“H(x,u,2,t) =.L(x,u,t) +

Ai(t)fi(x,u,t) . (2.16)
1

1

Letting ~H(x,u,p,t)

"

V(x,u,A,t), one notes that mini-~
mizing V with respect to u is equivalent to maximizing H
with respect to u, where H is equal to -V. Also the new

differential equations,
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{ (t) = - EY— i=1(1)n , | | "(2.17>
i aX4 |

are equivalent to the differential Equations 2.9. This is
seen as follows:

of

¢ aL n i 8
t) = - &= + -as (T — i = 1(1 (2.1
.Ai(‘) 2% igl (=24 (£)) 3%y i=11)n .( )
Substituting Ai(t) =—pi(t) .1 =1(1)n
n of :
. L 1
D (t) = 9= &+ t) — 1= 1(1
n f
. 3L, 3Ly
p.(t) 2 e - b P (t) —
i 3y 427 T 9Xy
py(t) = - 2 i=11n .-
45

The necessary conditions for the solutibn of the control
problem become Equations 2.6, 2.17 and minimize V(x,usA,t)
with respect to u(t). This formulation gives rise. to the
term "minimum principle" rather than "maximum principlé".
The two are equivalent and in what folioWs most problems are
considered in the format of the minimum principle.- The
Hamiltonian H of Section A is defined as -H in subsequent
sections, the adjoint variables as xi(t) = -p; (). With
this note, the notation in following sections should be

clear whether it is used in the framework of the minimum



43
principle or the maximum principle.

C. Conjugéte Gradient Procedure

This technique 1s an extension of thé Fletchér—Rgeves
method (26) to control probiems. If terminal conditions and
inequality constraints are present, fhe problem must be con-
verted to an uncon;trainéd form; possibly by penalty func-
tions. As in the steepest descent method, the gradiént tra-
jectory must be computed and stored. In addition, the con-
jugate gradient technique requires the computation of the
norm Qf the gradient and the storage of one other tra-
jeetory, the actual direction of search. Lésdqn et al.

(45) have shown that the direction of search in thebfunc-
tion.space generated by the conjugate gradient metﬁod‘are
such that the objective functional is decreased at‘éach
step.

Like most other iterative methods, this procedure can-
not distinguish between local and global minima. In gén-
eral, the best that can be expected is efficient convergence
to the bottom of whatever valley it starts in. The usual
proéedure for problems with local minima is to rerun the
method with different starting values.

We note that the following prdblem,

s

minimize J = g(x(tf)) + [ Lx,u,t)dt , (2.19)
t
0
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fi(x,u,t) xi(to) = xoi s, 1 =2(1)n

subject to,:'ci

'(2;20)
can be reformulated és follows. Define a new state.véri—
~able x; such that

Xl = L(x,u,t) xl(to) =0 . ' (2.21)

The indéx of performance 2.19 can then be rewritten ‘
as foilows; |
te
J = g(#(tf)) + It X0t = g(x(tp)) + x;(t5) = ¢($(tf))

o &

(2.22)

subject to.xi = fi(x,u,t) xi(to) = xoi i =j1(1)n .

(2.23)

It is assumed that given g coﬁtrol vector u,;Equation _
2,22 and 2.23 can be solved for a unique state ve¢tor
x = x(u), and thus J = J(u) is a function of u alone. The
1hdex of performance Equation'2.19 or in the alternate form'
Equation 2.22 may include penalty functions to account for
terminal state conditions or other constraints. In what
follows let u(t) be a single control function (r = 1).
The extension to the multicontrol problem is straight—
forward.

The conjugate gradient algorithm requires the
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computation of the gradieht trajectory. Let H, the Hamil~

tonian, be defined as:

n n
H= g A;f: = AL + = f.As s (2.24)
j=1 ** 1 4= +F ,
and
. n afi ;
A, = —_ 2.2
A iil TS ? (2.25
=Q 1 = -
A (bp) = 2= ) i =1(1)n (2.26)
: t=ty
and the gradient is

g(u) = 3L (2.27)
su .

Let ui(t) be the ith approximation to the optimal con-
trol u¥(t). The corresponding gradient g(ui) is computed
by solving the state Equations 2.23 forward with u = Us s
solving the adjoint system 2.25 with conditions 2.26 back-
wards in time and then computing g(ui) from 2.27.

One then proceeds as follows:

u, = arbitrary , : (2.28)

g, = glu)) (2.29)
and

5o = -8, .
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Choose o = s to minimizo J(ui + uni) (use an inde-

pendent search routine to compute o) and ﬁhen (2.30)
Uipg T Uy T %38 ®; > 0 (2.31)
= 2.
841 g(ui+1) . (2.32)
By = (i‘:i+l | ”i+1)/(“j | mi_) (2.33)
Si41 T TBy4q t O BiSy (2.34)
where
te
(g. | &) = [ & (g (t)at . (2.35)
i J & i J .
o
The new direction of search si+1 is not the negative

gradient direction “8i+1° but is computed using Equation
2.34. The distance traveled in this direction is de-
termined by the one dimensional search problem of

J(ui + asi) in EQuation 2.30. One iterates by improving
u; at each step by generating search vector S5 using
Equations 2.30 through 2.33 until a convergence criteria
is satisfied. Lasdon et al. (45) have shown that if u(t)
is an element of a Hilbert space Q and J(u) a Frechet dif-
ferentiable mapping (47) from Q to the real numbers, then
the conjugate gradient method when applied to J(u) gen-

erates directions 3 which arec always directions of descent,



%&' I (uy + as;) <0 . (2.36)
o=0 :

In the section on the gradient method the topic of
penalty functions was introduced. Penalty functions were
used to insure that the terminal conditions on the state
vector were satisfied. We now wish to consider the opti-
mal controi problem with inequality constraints on the
state and/or control vectors. Such problems can be solved
numerically by converting them to a sequence of problems.
without inequalities by means of penalty functions. The
type of penalty function most often used takes on small
values when the state and control vectors are within the
constrained set and increasingly large values when they are
outside the set. This approach forces satisfaction of the
constraints to a desired tolerance. Such functions have
been used by Bryson and Denham (11), McGill (50) and others.

The algorithms treated so far apply to problems in
which there are no inequality constraints on the control
and/or state variables.

Linear (in both system énd index of performance)
optimal control problems must have control and/or state
constraints to be well posed. For such problems the solu-
tion is always on a boundary constraint. For nonlinear

problems with state and/or control constraints, part of the
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solution may be on the constraint boundaries (constrained
areas) and part may be inside the constraint boundaries
(unconstrained areas).
Integral penalty functions form an alternate approach

to treat the above type of problem. Consider the scalar

inequality constraint

g(x,u,t) < O for all to <t < tp . (2.37)

The performance index J, (Equation 2.19) may be iugmented

t
J¥ = J + u[ftf [g(x,u,t)]° H(g)dt] (2.38)
0
where
H(g) = 0 ifg. 0
= 1 ifg >0 . (2.39)

By a suitable choice of the constant u (positive if J is
to be minimized and negative if J is to be maximized) the
constraint 2.37 can be approximately satisfied. If [u]
is taken too large the previous iterative algorithm will
tend to concentrate more on satisfying the constraint than
on maximizing or minimizing the performance index. As a
result convergence is slow. |
Fiacco and McCormick (22, 23, 24) have extended the

penalty function formulation. They have considered penalty
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functions of the above type and interior penalty functions
for nonlinear programming problems. The interior method .
works from inside the constraint set, with the penalty in-
creasing as the boundary is approached. .Hence this method
seems to avoid many of the problems associated with the ir-
regularity of the constraint boundary. Lésdon, Waren and
Rice (46) have extended the interior penalty function tech~
nique to control problems as follows.
Consider the problem formulated in Equations 2.19

through 2.23. Add to that formulation the following two

constraints.
h(x(tp)) = 0 h : R® » r™ m<n . (2.40)
g(x,u,t) > 0 n : RFTHL | gS . (2.41)

Since as mentioned, one assumes that given u(t), Equation
2.20, the differential system and initial condition then
yields x = x(u). Hence the constraint Equation 2.41
gi(x(u),u,t) can be formulated as gi(u,t) and the objective
function in Equation 2.22 ¢(x(tf)) as @g(u).

Define the set,
G(t) = {x(t) | h(x(t)) = 0} .

Let S denote the set of all controls u which together with

their associated state trajectories x satisfy,

(1) x{tp) e G(tp) and Vg <t <t x(t) £ G(t),

f
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(11) g(x,u,t) > 0 for to st <ty

Define S° as the subset Oof S for which (ii) above becomes

g(x,u,t) > 0 for to <t =<t

P
The inequality constrained pfqblem Equations 2.22,

2.23, 2.40 and 2.41 can be converted to a problem without

inequality constraints by adding, a penalty function to the

objective index BEquation 2.22. This yields the so-called

P-function:

] tf

1
P(u,r) = Q(x(tf)) +r 151 fto E;?ijﬁ:ET dt , (2.42)

where r is a positive scalar. Choose rl > 0 and u, € s©

and consider the problem of minimizing P(usrl) starting from
us subject to the differential Equations 2.23 and terminal
conditions 2.40. This will be called the P-problem.

If the penalty function term
s 1

approaches infinity as any gi approaches zero for

t e [to,tf], this then leads one to expect that a relative
minimum of P(u,rl) exists in S°. Lasdon et al. (46) have
shown this to follow since the trajectory of steepest descent

of P starting from ug, a path of which P(u,r) is strictly
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decreasing, cannot penetrate the boundary of S. The mini-

mizing point depends on the choice of r_  and is denoted by

1
u(rl).

Now consider repeating this minimization for a sequence
of r values ry > r2 > r3 e rk > 0. Eachiminimizing point
u(rk) is in S°. Further, by reducing r, the influence of
the penalty function term 2.43 which penalizes closeness to
the constraint boundaries, is reduced and in minimiiing P‘
more computational effort is concentrated on reducing @.
Thus the sequence of points u(rl), u(rz), cees u(rk) can
come closer and closer to the boundary of the set S if it
is needed and profitable, in ﬁerms of reducing @. Thus in
the 1limit r =+ 0 one would expect that the minimizing point
u(r) approaches the solution of the inequality constrained
problem.

One must restrict u to be in S since P(u,r) may have a
minimum exterior to S and only those within S are of inter-
est. In practice one can use minimization techniques which
only need account for the terminal constraints 2.40, such
as gradient methods.

Lazdon et al. (46) have shown that the sequence of P-
minima converges to the minimum objective value of the

original problem. If the problem stated by Equation 2.22

is linear in x and u for all t and Equation 2.23 in convex
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in x and Equation 2.22, h(x(tf)), is linear and each com-
ponent of Equation 2.23, g(x,u,t), is a concave function of
x and u for all t, then the problem is one of minimizing a
convex functional over a convex set S in u space. Such a
problem has no local minima in s® distinet from the global
minimum. In order to establish the existence of a P-problem

minimum in So, the following assumptions need to be made:

1. 89 is not empty.

2. min @(x(t.)) = v_ > -= .
uesS £ ©

3. If there exists t¥ [to,tf] such that for some i

gi(u(t*),x(t*),t*) = 0, then

t

f

f Ldt:co .
togi

4, The functional @ and all components of the vectors

h and g are continuous in u for all u ¢ S.

5. {u | (4 < k) and u ¢ S} is totally bounded for any

finite k.

Definition: If uO is a point in S® then a local minimum of
the function P(u,r) relative to ug is a point u(r) € S with
the property that in a small neighborhood of u(r) there is
no point in S with a lower value of P, and

P(u(r),r) < P(uo,r). Lasdon et al. (46) have proved the
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following results about this SUMT application to optimal

control problems.

Theorem I.
Any local minimum of P(u,ro) over the set S relative to

u. ¢ S°, is finite and at least one such pcint exists.

Theorem II.

Under the assumptions 1-5

lim [min P(u;rk)] = v

rk+0 ues

o .

Corollary:

1. 1im ’J(uk) = v
rk+0

0

s tf 1
pX dt = 0]

2. lim r
o L . {O 2 U, X5 ) .

_rk+0 i

The preceding results do not require any convexity as-~
sumptions. It is only necessary that the global minimum of
P(u,rk) for u ¢ S° be determined for each rk. |

The solutions to each P-problem (xk,uk) satisfies the

following conditions:

x = £(x,u,t) x(t ) = x (2.44)
fo) (o]
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. 8 rk :
At 1 = (g (2.45)
81

where H = 37f and h(x(t,)) = 0

A(tp) = (B, + B Tv) (2.16)
t=tf
S rk
Hu - i-ﬁ]_ Tz(gi)u =0 (2.47).
i

where v is a vector of appropriate penalty function con-

stants.

D. Davidon Method

Consider the control problem as formulated in the pre-
vious section. The objective function may include penalty
functions on the terminal constraints and interior penalty
functions if there are inequality constraints. Hence the
problem can be framed as an unconstrained control problem
and solved by the sequential unconstrained minimization
techniques discussed in the previous sections.

Recent results have indicated that the most efficient
methods for unconstrained minimization which do not require
second derivatives are those which, when applied to a
quadratic function, generate conjugate directions (25, 20,
56). Hence a quadratic function of n variables can be

minimized in n steps or less. As indicated in the previous
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section, the conjugate gradient method has béén extended to
‘optimal control problems. Tﬁis section considers a dif-
ferent conjugate direction method,'DaVidon's algofithm,
which appears to be more efficient than the conjugate gra-
dient method (59). Extension of Davidon's method for min-
imization in n variables to control problems has been made
(70, 1, 53). Consider first the Davidon method for mini-
mization of functions.. Given a scalar function f of n
variables X15 X5 cees X represented by a vector x, the
method can be described as follows.

1. First an arbitrary starting point x°

and a sym-
metric positive definite matrix H° (generally the identity
matrix) are selected.

2. Knowing xi,‘the gradient gi_= fx(xi) is computed.

3. PO = -H%°. For the succeeding iterations, the HL

matrix is computed by

Hl - Hi—l + (0’1-1 0'1_1 )/ o.l—l yi"l

. . . 2T . 2T :
_(Hl—l yl—l y1—1 Hl—l)/(yl—l Hl-l yl—l)

where ¢ 1 = ¥t - x171 ang yi"l = gi ~ gi-1, Then

pl = _ngl-

4., The next point xit+l is obtained by a one-dimen-~

sional search
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£(x1*1) = min £(xi + api),i.
(¢

5. Go béck to step 2 and repeat until a convergénce
criterion is satisfied.

The extension to optimal control problem follows (53,
70, 1). The problem considered is that of minimizing a

functional
J =] Lx,u,t)dt + ?(x(t.)) (2.48)

subject to the state equations,

x = £(x,u,t) ‘x e R", u ¢ RF »

| A
o}

x(t) = x, (2.49)

If there are inequality or terminal constraints they
are handled by a penalty function formulation.
For this problem, for a given u, the gradient of J with

respect to u on the constraint surface is given by
g =L (t)+ £ T(e)ale) . (2.50)

The adjoint vector A satisfies

T

2 = £ T(t)a(t) + L » ¢ R (2.51)
X X

where
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g .
M) = 22 (x(t,))

Suppose the terminal state constraints are to be treated via‘
penalty functions so that the augmented performance func-
éional J = J1 + % ¢TP¢ is to be minimized subject only to
the differentiai consﬁraints. Here, P is & p x p positive
definite matrix of penalty constants. Then, if i denotes
the iteration number, the algorithm can be stated as follows:

1. Por i = 0 choose an initial control vector u,(t).

2. Integrate the state equations x = £ from to to tao.

3. Define the Hamiltonian function H = L + A%f and

integrate the adjoint equations

. T
A = —aH/8x, Altp) = a@/ax(t.) + [(ay/ax(t.)] Py

from t_, to t .
f 0

L. Compute the gradient vector g, = g[ui(t)] = 3H/3u.

5. If i > 0 compute the auxiliary functions

yi(8) = 85 - 854
zi(t) = Uy - uy g
ai(t) = y3,1=1
i
vy t 22[(bj_1|yi)bj_l - (ey_qfyile;qd s
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1/2

b, (£) = 2,/(z4)¥,)

ey (£) = a;/(a;hy;)1/2

where (vjw) denotes the inner product

te

[ 7 viy at

2

6. Compute the direction of search

p,(8) = -g;, 1=0
i

J=1

7. Let ui+1(t) = ui(t) + o pi(t) and determine «; by

i

performing a one-dimensional minimization of J:

J(u:.L + aipi)i J(ui + Ypi) for all positive Y.

8. Replace i by i + 13 if i = g, where q is the pre-
determined restart integer, set 1 = 0 before re-

turning to step 2.

Observe that step 5 requires that rN[1 + 2(q - 1)] values
be stored if a table of N values is used to represent each
time function.

In the preéeding algorithm, it is noted that as the

iterations proceed, the number of vector functions to be
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stored increases. To remove the difficulty the préceding
steps are carried out for only q iterations. Then the,pro—
cedure is repeated starting with the steepest descent di-
rection, the negative gradient direction, at the (q+l1)
.step.

Pierson and Rajtora (57) have presented additional éomf
putational experience with the Tripathl and Narenda version
of the Davidon algorithm applied to control problems. They
conclude that the algorithm, when applied to nonlinear
'optimal control problems incorporating penalty functions
is at least competitive and probably superior to the con-
jugate gradient method. My computational experience, whicﬁ
is reported in Chapter 3, totally supports that claim.

Also my experience indicates that the restart feature is
actually an advantage rather than a practical necessity.’
In the problems that I considered, g was selected small,
say 3, 4 or 5. This makes the storage requirement for the
algorithm small and the convergence rate is generally en-
hanced.

One should note that the search of the Hilbert space
of controls for the optimal control is restricted to con-

trols satisfying Equations 2.49 and 2.51. The condition

g(u¥(t)) = 3L = ¢
su

holds only at the minimum of J(u(t)). The expression,
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- o8H
g(u(t)) '*-a—ﬁ' R

is the gradient to thé Hamiltonian and points in the direc- -
tion of increasing J. This is seen by noting that the first

variation in J given from Equation 2.48 is

3@ te _
87 = 3% sxo + [ 8L at . (2.52)
o
The notation of &8J represents the first order approximation
to J(G(t)) w J(u(t)) where y is a given nominal control.
Using the definition of the Hamiltonian H(x,u,r,t) =
L(x,u,t) + ATf(x,u,t) and requiring the satisfaction of the

state differential Equation 2.49 results in,

sL = 8(H - ATf) = s(H ~ aTx) (2.53)
T T '
= 3%— su + %%— §x - ALg%k (2.54)

or rewriting using Equation 2.52 one obtains,

3 b1 ouT SHY T .
t=t o .
(2.55)

Integrating the last term in the integral by parts, where

the respective vector components are:

=:\, . = e
LAY 5 Vl Xy
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dwi = Ai dVi = -xidt
t &
3 H .
§J = 3% 8xp - AT(t)8x(t) + [ [%;— su ¥ s x(h + %g)]dt .
to by, to '

(2.56)

However, 6x(to) = 0 because the initial conditions are
fixed. Using the optimality conditions 2.51, Equation

2.56 becomes,

£
s3 = [ ()T sy at . ' (2.57)

If the variation of the control u is along a direction

of search s then,
su = séa s (2.58)

where o 1s the scalar search-parameter. Thus the deriva-

tive of J along s is given by the inner product of

= 88
g = 3
and s,
t
f T
aJ _ oH
i = ft [au s]dt . (2.59)
o
Therefore %% = p(u) is analogous to the pradient vector in

Lfinite dimensional analysis.
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This leads to a discussion of the one dimensional
search procedure used to compute the optimal o for each
iteration. Utilizing Equation 2.59 to compute g_g, the
one dimensional minimization procedure is based on using
a cubic polynomial.fit relating J(q) and o. The functional
J is evaluated at least twice and also two values of fthe
derivative %% using Equation 2.59 are computed, hence a
cubic polynomial can be determined. The positive value of
o that minimizes the cubic polynomial is'then chosen for
the stepsize parameter for the next iteration. The pro-
cedure is similar to techniques used for finite dimensional

problems (26) and will be explained in what follows.

J(a)

bt et v S
fre e e e e - -

Figure 2.1. One dimensional minimization
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The first step estimate for improving the control is
given by

t
£ /
h =1/ (@) at)t*

o
This estimate is used as the initial value to start the
procedure at the first iteration. Then J'(a) where the
prime indicates derivative with respect to the stepsizé
parameter o, is examined at the points o = 0, h,.hh, 16h,
«ey 25 b. The symbol b represents the first of these
values at which J'(b) is nonnegative or J(b) has not de-
creased. It then follows that o is bounded in the interval

< <
a oy 2 b Where %

is the optimal stepsize parameter to be

used in the next iteration. |
The next stage uses the cubic interpolation given by

Davidon (20) where the positive critical value is computed

from the cubic, fitted from the information contained in

J(a), J'(a), J'(b), and J(b). One defines

7 = 33(a) = J(b))
b -a

+ J'(a) + J'(b) N (2.60)

W= (22 - 31 @)ar (), (2.61)

then the estimate E of a_ 1is given by,

m
_ J'(D) + W -3
ve =0 - Ty - oW (B - )
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If neither J(a) nor J(b) is less than J(a_), then de
is accepted as the estimate of O A check on .the value of
.ap is the closeness to zero of J'(ap). If'J(a) or J(b) is
less than J(a,), then according as J'(a ) is positive or
negative, the. interpolation is repeated over the.subinter-
val (a,ae) or (ae,b) reépectively. The reinterpolation used
here, if the cubic procedure did not work, is a form of
linear interpolation on smaller and smaller intervals with
an exit after a fi#ed number of trials.

This technique of choosing the optimal stepsizé of the

search direction worked well for the applications of both

the conjugate gradient and Davidon algorithms.
E. Other Aspects of Computing

1l. Discrete control problems

One inevitably must discretize problems for digital
computer solution. One can work with a continuous time
model and discretize to solve by discrete variable methods
or the model can be represented as a discrete multistage
system and solved directly.

The mechanics of setting up a discrete time optimal
control problem will be described and then solution methods
consldered. TEach of the previously mentioned continuous
solution algorithms has a discrete analogue. Also so does

the penalty function formulation.
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Consider the problem with no inequality constraints of
finding the sequence u(0), u(l), ..., u(N-1) and x(1), x(2),

«.+s x(N) to minimize

N-1 .
J = g(x(N)) + .z LY (x(1),u(i)) , (2.62)
i=

1 : R xR >R , g : R® » R
subject to the constraints (x is an n vector and u an r
vector)

x(i+1) = £H(x(i),u(i)) i = 0,1,2,...,N-1

x(0) = X el ; R% x R¥ » RO (2.63)

n(x(N)) = 0 h : RY » RV q <n .(2.64)

We can formulate the terminal constraint 2.64 as an exterior
quadratic penalty function K[h(x(N))]2 and include it in the
F(x(N)) function. Let us adjoin 2.62 with a sequence of

multipliers A(1),

_ N-1 :
T=gx=m) + ¢ Lhx),u)) + aT(i+1)
2z

i
[£1(x(1),u(i)) - x(i+1)1} (2.65)
and define a scalar sequence H:.L (Hamiltonian)

g = pl(x(a),u(1)) + AT+ et (x(1),uli)) (2.66)

i =0,...,N=1 .
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Substituting Equation 2.66 into 2.65 we have

‘ N-1 )
= g(x()) - AT(x(N) + = [HL - aT(1)x(1)] + HO
S i=1 ,

(2.67)

Now consider the differential change in J due to dif-

ferential changes in u(i).

aF = [T?(ZW - AT(N) Jax(N)
N-1 1 7 ax(i) + 3Hi .
+ Z {[_X—(?L_y - A (1) Jax(i 50 (1) du(s)}
¢ B0 qu(o) + 2H ax(0) ‘ (2.68)
oul0) 9x(0) * ‘

One wants to find conditions on x, u and A such that .
the standard first order optimality condition d4J = 0 is
satisfied. Choose the adjoint multipliers such that:

oLt i apl ‘ -
m +' A (i+41) m i=0,1,...,N=-1 (2.69)

AT(1)

Ny = s (2.70)

one may specify the necessary optimality condition

ut .
_37?5' 0 120,1,2,00.,N=1 . (2.71)

In summary, to find a control-vector sequence u(i),

i=0(1)N that produces a stationary value of J, we must
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solve the two point boundary value problem defined by
Equations 2.63, 2.64, 2.69, 2.70 and the optimality con-
ditions Equation 2.71.

Most gradient méthods start with solutions that satisfy
neither the optimality conditions Equation 2.71 nor the
boundary conditions. The algorithms then generate itera-~
tive solutions which improve the control trajectory at each
iteration.

Given a control trajectory u®(i) i = 0,1,...,N-1, the
gradient procedure goes as follows:

1. Integrate the'system-Equation 2.63 forward in time
using u®(i). ' |

2. At the terminal time evaluate A(N) and using EquaF
tion 2.69 and 2.70 integrate the adjoint trajectories back-
ward in time. |

3. Using the calculated x(i), a(i) i = 0,...,N-1 cal-
culate the Hamiltonian 2.66 and its gradient with respect
to u(i).

4, PFind the direction of search to minimize the Hamil-
tonian by using gradient, conjugate gradient or Davidon's
method. Also make a one-dimensional search to determine the

scale factor in the search direction.

uk+l(i) = uk(i) +a,p, P, = direction of search .

5. Return to step 1 with a new u(i) trajectory after
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possible modifications to the penalty constants.
Another important approach to solving discrete control

problems with inequality constraints

gl(x(1),u(i)) < 0 £ = 0,1,...,N-1 (2.72)

is to consider them as large tiﬁe-staged noniinear prd—
gramming problems. The system Equations 2.63 form equality
constraints and 2.70 form inequality constraints where 2.62
is to be minimized (65).

One may use some penalty function formulation to re-
duce the constrained problem to an ﬁnconstrained one, and
sequential unconstrained optimization techniques to solve
the problem (22, 23).

A modification of the gradient method could also be
utilized with inequality constraints by using SUMT tech-
niques with the original objective function 2.62.

A difficulty encountered here is the size of the non-

linear programming problem if the time horizon is large.

2. Discrete control growth model with inequality constraints

A second approach to a discrete control problem is con-
cerned with the optimal growth and valuation in multisectoral
economles in which the technology is of the discrete, activ-
ity-analysis,type. This model is due to Bruno (9) and is
believed to have a considerable degree of realism and use-

fulness in the field of development planning. From the
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computatlional viewpolnt thils analysis allows one to solve

a large time;stagéd programming problem in termé of small
subproblems. The 1link Between the time periods is provided
by system differential equations and adjointvdifferential
equations. Bruno's (9) main concern in the analysis was to
give full asymptotic characterization of the optimai time
paths, the price behavior, and the nature of choice of al-
ternative activities for infinite horizon models. My
interest is to analyze the computational procedures for the
model, given a finite time horizon, and to check the feasi~
bility of the neighboring extremal algorithms applied to the
model.

Consider the prototype of the general model as a simple
fixed proportion two-sector model. An economy produces two
goods, a consumption good C and a depreciable capital good
I (I = gross investment), with an exponential depreciation
rate u. Each sector uses, as fixed proportion inputs, both
capital and a primary factor of production, labor L, which
is assumed to grow at an exogenously fixed rate n.

The production technology is assumed to be given by a

coefficient matrix A.
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Introduction of the following notation gives:

c(t) = C(t)/L(t) = consumption per capita,

z(t) = I(t)/L(t) = gross investment per capita,
z(t) = k(t) + ak(t) k = dk/dt, and

k(t) K(t) _ capital-labor ratio,

A =n+ p = gross rate of growth.

One can then formulate the following optimal control problem:

£ -8t
maximize J = f c(t) e

%o

2
at - EC [k(t,) - ki ]
2 £

(2.73)

where § = time rate of discount and PC is a positive penalty

constant and the following constraints.

(labor constraint) aje + ayz <1 (2.74)
(capital constraint) a;e + a;;2z < k (2.75)
(nonnegative consumption -¢ < 0 _ (2.76)
(nonnegative investment) -z < 0 (2.77)

(and the differential equation) k(t) = -ak(t) + z(t)

(2.78)

(boundary conditions) k(t ) = k k(t.) = k . (2.79)
o (o} f tf

The necessary conditions for the solution to this
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problem can be derived from either the calculus of varia-
tions or Pontryagin's Maximum Principle (58). One intro-

duces the Hamiltonian form,

He,k,z,t,1) = e 8%c(t) + e %Fa(t)[2(t) - ak(8)] .
(2.80)
H can be interpreted as the net national product per
capita where net investment is valued at the demand price
for capital =(t). All prices are in consumption units.
Applying theorem 23 (58, p. 29) and the related anal-
ysis, we conclude that if a program [c(t),z(t),k(t);
t.o <t < tf] is optimal, then there exists a continuous

o}
function ¢(t) such that

7(t) = (A + )7 - s . (2.81)

This is seen from writing inequalities 2.T74 and 2.75 as

equalities
age + apgyz + e, ~1=0 , (2.82)
a;c ta; 2z + e - k=0 (2.83)

where €6 and ¢ are slack functions. Then from theorem 23

we have,
d_(o-6t - . OH , -8t 3
dt(e 'ﬂ'(t)) ﬁ{- + e w E[aoc + aolz + 80 - 1]
-6t 9
+ se -ﬁ[alc + allz + € - k] . (2-8“)
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Equation 2.84 reduces to

* =8t -8t

—st -
ce 0 570 = J(cam)e 8 & s(-1)e7 0t

s (2.85)
and
m= (A 4+ &) - s .

At each moment of time, gross national product,

GNP = Hesjb + n)\k =c + 12 s (2.86)

is maximized subject to inequalities 2.74 through 2.77.
This 1s equivalent to solving a linear programming problem

at each moment in time. Its dual is:

minimize De‘St = w + sk (2.87)

where D 1s discounted gross national income, subject to

the constraints;

aWw + ajs > 1 (2.88)
agW +ayj sz (2.89)
w >0 . (2.90)

s _>_ 0 . ] (2.91)

w has the interpretation of the real wage rate and s that
of gross rentai price of capital. In the formef notation
k(t) is the state variable, ¢(t) and z(t) are the cdntrol
variables, n(t)e-at is the auxiliary variable and w and s

are the Lagrange multiplier functions. In addition m(t)
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must satisfy the conditions due to the terminal constraint

on k(t), namely

~8tp ‘
e “(tf) = PC[k(tf) - kf]. . '(2.92)

Writing the inequality constraints in equality form

one has:

the Production Equations

+ z + =
?oc aol €o 1

lc + allz + g =k

the Price Equations

aow + als - Po = 1

aolw + alls - P =7

for all t in the interval to <t < tf. The nonnegative

slack variables have the following economic interpretation:

% = rate of unemployment of labor

€ = excess capacity per unit of labor

PO = difference between the supply price and demand
price of consumption

P = difference between supply price and demand price

of capital.
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From linear programming theory we know that we must have

we = se =P, C=Pz=0 . (2.93)

Now within the framework of the model as given one can
consider the computational procedure. The matrix A is given
as 1s also t_ and tg, k(ty), k(tg), A and §. With k(t_)
given one estimates n(to) and then solves the primal linear
program Equations 2.74 through 2.77 and its dual. This
then with objective function 2.86 gives values for c(t.),
Az(to), w(to) and s(to). The differential Equations 2.78
ﬁ = z~-\k and Equation 2.81 5 = (A + 8)w - s allow one to
step up the time interval for k(t) and =(t) to k(tl) and
n(tl). The linear program and its dual are again solved
generating c(tl), z(tl), w(tl) and s(tl) and the iteration
continues until k(te) is computed. If K(ty) agrees with ke
then the optimal time paths have been computed, if not then
n(to) must be modified and the process repeated from t = t,
to t = tp. Interpolation can be used to assist in the
selection of a proper w(to). This computational procedure
could be extended to models with more sectors. But as the
numbers of adjoint variables increase, the problem of se-
lecting proper initial values for these variables becoﬁes
increasingly difficult. This procedure is sometimes called
the neighboring extremal algorithm (12) and a statement of

the method is as follows:
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;

l. Approximate initial values of the control problem
adjoint variables at the initial time.

2. Integrate the state and adjoiﬁt differential equa-
tions forward in time, at the same time make an optimal
choice of the control vériables using the current values of
the state and adjoint variables and observe how far the
state variables at terminal time miss the boundary condi-
tions.

3. Using this observation modify the approximation of
the initial adjoint variables unless sufficient accuracy
has been obtained and go back td step (2) until a conver-

gence criterion has been met.
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III. ECONOMIC APPLICATIONS AND NUMERICAL SOLUTIONS
A. Introduction to the Control Problem Computation

In this report, all automatic computations were per-
formed on the IBM 360/40 digital computer using Fortran IV
language and‘double precision arithmetic with accuracy of
approximately sixteen decimal digits. All integrations were
performed using fourth order numerical integration methods.
Fixed stepsize was used in the Runge-Kutta procedure. The
interval of integration was divided up into 100 equal sub-
divisions. Each one-dimensional minimization required in
a solution reported here was based upon a cubic polynomial
approximation to the contour of the functional along the
direction of search. After a satisfactory approximatioh'
was made, the positive value corresponding to a minimum
of the polynomial was chosen as the optimum search-
direction stepsize. This procedure, described earlier,
has been used extensively in finite dimensional problems
and proved satisfactory here for control problems (26).

At this point I would like to comment about using
penalty functions to handle terminal constraints on the
state variables. The penalty function approach is an
alteration of the form of the optimal control problem
itself, rather than a modification of the numerical tech-
nique used to solve it. The constrained problem is approxi-

mated by on2 or more unconstrained problems by adding to
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the objective functional a positive measure of the con-
straint violation.

'The penalty function approach attempts to force those
controls producing large constraint violations to lie on
contours of higher objective functional values in the con-
trol space than those producing smaller constraint viola-
tions. The choice of the values of the penalty constants
influences the objective functional throughout the entire
control space. I have found that for a typical control
problem, the effect of the penalty term is extremely dif-
ficult if not impossible to determine without numerical
experimentation. Therefore in many cases the choice of the
values of the penalty constants is arbitrary and must be
chosen on the basis of numerical trials.

Some of the difficulties involved in using penalty
functions can be avoided by replacing a single solution at-
tempt by a sequence of solutionsAinvolving increased weight-
ing of the constraint violation. Each new subproblem is
started with the control computed from the previous sub-
problem. This problem has been studied.extensively as
mentioned for finite dimensional optimization procedures
by Fiacco and McCormick (22, 23, 24). The choice, however,
of the penalty constants for each subproblem must still be
made arbitrarily at first and modified on the basis of nu-

merical experience with each subproblem.
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Either the fixed or the increasing sequénce of penalty
constants were used to solve the problems that follow. After
initial trial and error with penalty constants for each |
problem, adequate penalty constants were determined to handle
state terminal constraints.

A nonlinear control problem with quadratic objective .
functional was given by Willoughby (71). This problem was
used to check out the'computer codes for both the conjugate
gradient and the Davidon algorithms and the results are in-
cluded here to illustrate the convergence of the methods.

A statement of this test problem, T-1l, with the penalty

function included follows:
minimize J = 1/2 f5 (x2 + x2 + u2)dt + B(x,(5) - x,(5)
‘01 2 272 1

- 1.0)% (3.1)

subject to:

X = X, xl(O) =1 s

e
il

2
2 = 7Xg + (1 - xl)x2 +u |, x2(0) =0 s

2(x(5)) = -x,(5) + x,(5) -1=0 . (3.2)

The initial control estimate was chosen uo(t) = 0 for all
t in the interval [0,5]. For the Davidon algorithm four
iterations were performed before restartirng with a direction

of search chosen in the negative gradient direction. The
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solution to the above problem is presented in Table 3;1.
‘The penalty constant used was 10.0 and the Runge-Kutta step-
size was h = .05. In Table 3.2, the result of a sequence

of subproblems is preseﬁted with variable penalty constants
and initial control function uo(t) = 0. The control for

each successive subproblem is generated from the preceding

subproblem.

B. One-Sector Neoclassical Growth and
Optimal Growth Models

To introduce the computation of the optimal growth
model first consider the growth model, with no objective
funetional, which characterizes economic growth in an aggre-
gate closed economy. Aggregate means that the economy pro-
duces a single homogeneous good, the output at time t is
Y(t), using two inputs, labor L(t) and capital K(t). The
adjective, closed, refers to the point that neither output
nor input is imported or exported. All output from the
productive process is either consumed or invested. If one
represents consumption as C(t) and investment at I(t) then

the income identity can be written as
Y(t) = c(t) + I(t) , (3.3)

which states that output (Gross National Product) can
either be consumed or invested.

Investinient is used to increase the stock of capital
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Table 3.i. Penalty function solution of problem T-1
using a fixed penalty constant of p = 10.0

. Davidon Method " Conjugate Gradient Method
et 1 x5 (e I Ax(5) (g.8)
1. 7.8901  .0605 15.6090 7.8901  .0657 15.6092
2. 2.1788 -.0089 15.6929 2.1749 -.0126 14.5049
3. 2.1532 -.0674 7.2383 2.1561 -.0702 5.3084
4, 1.9949 -.0656 1.7995 2.1447 -.1158  T7.94T4
5. 1.9820% -.1048  3.2139 . 2.1069 -.1599 12.4029
6. 1.9327 -.0520 4.2029 2.0890 -.125%2 L4.6076
7. 1.6746 -.0585 .3276 2.0804 -.0885 4.2695
8. 1.6722 -.0739 .8537 2.0652 -.0357 10.3254
9. 1.6712 -.0571 .0700 2.0182 -.0388 29.6590
10 1.6707% -.0562 .0020 1.9164 -.0280 28.7799
11 1.6701 -.0551 .2x107" 1.8810 -.0391 12.0685
12. 1.6701 =-.0551  .2x10~2 1.8649 -.0916 19.0845
13. 1.6701 -.0551  .2x10~2 1.7856 ~-.1988 115.4830
14, 1.7404 -.1552 51.0380
15. 1.7277 -.1172 20.2462
16. 1.7227 -.0889 9.8346

aResglt of a negative gradient direction of search.
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Table 3.2.. Results of Davidon and conjugate gradient
algorithm applied to problem T-1 with vari-
able penalty constants, initial estimate

uy = 0.0

Subproblem Penalty J - % 22(x(5)) @(x(5)) .Number of

Number Constant Steps Taken
Davidon Method
1 10.0 1.645 -.07 8
2 50.0 1.645 -.07 3
3 100.0 1.6863 -.005 3

Conjugate Gradient Method

1 10.0 2.0590 -.035 8
2 50.0 1.9032 -.0030 3
3 100.0 1.7059 -.0009 3
L 200.0 1.7006 -.0002 2

and to replace depreciated capital. Letting K(t) be the
stock of capital at time t and assuming that the stock of
capital depreciates at a rate §, then gross investment

identity states that:

I(t) = K(t) + SK(t) . (3.4)
Capital accumulation is that part of investment not used to
replace depreciated capital.

Output is determined by an aggregative production
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function which summarizes the technically efficient possi-

bilities for production of output from capital and labor:

(t) = F(K(£),L(+)) | - (3.5)
FK >0, FL >0, FKK <0, FLL <0
ii% Fp ==, %iﬁ Fp, = o . (3.6)

Also if one assumed that the production function ex-

hibits constant returns to scale, then

=P, = 1D = r0) (3.7)

i

where the funetion f(.) gives output per worker as a func-
tion of capital per worker. Denote per worker quantities

by lower case letters:

y(t)

Y(£)/L(t) , k(t) = K(t)/L(%)

e(t) = C(8)/L(t) , i(%)

I(t)/L(t)

by Equation 3.4 f£'(k) > 0, £"(k) < 0, Vk

lim £'(k) = « , 1im f'(k) = 0
k-0 k>

The labor force is assumed to grow at the given exponential

rate r

L =rl . (3.8)
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The income identity, the gross investment identity and
the production function can be combilned in per worker terms
to form the fundamental differential equation of neoclas-

sical economic growth,

£(k(t)) = c(t) + ak(t) + k(t) , | (3.9)

where X = r + 8. This differentiallequation states that
output per worker f(k) is allocated among three uses:
1. Consumption per worker c(t),
2. Maintenance of the level of capital per Workef
Ak(t),
3. Net inqrease in the level of capital per worker
k(t).
Two values k and k designate levels of capital per

worker at which ¢ + k is a maximum and zero respectively.

(k) - ak > £(k) - Ak Yk > 0

|v

£(7) -2k =0 . (3.10)

Under the assumption given k and k exist and are unique (36).
fY(k) =A=8+1r | (3.11)
The maximized level of consumption per worker ¢ that can
be maintained forever as an equilibrium level at R is given:
by, |
c = £f(k) - 2k - (3.12)

where ¢ is called golden-rule level of consumption per
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worker. Condition 3.11 is called the golden rule of accumu-~
lation. k is an equilibrium but not a stable equilibrium.
Deviations to the right of k are eliminated but to the left
are not (36)..

The problem of optimal economic growth is a dynamic
control problem. In the one sector problem there is one
state variable k(t), capital per worker and the equation of
motion is the fundamental differential equation of neo-

classical economic gréwth.
k = £(k) - Ak(t) - c(t)

k(ty) = kg k(te) = kp - (3.13)

From the viewpoint of a central planner who has author-
ity over the entire economy, the control variable is con-
sumption per worker. The problem then is that of choosing
a time path for consumption per worker over the planning

horizon:

{c(t) =c(t) | t, <t < tp) (3.14)

0

where to, tf, £(.), A, k kf, are assumed given. Any time

O’
path satisfying the differential Equation 3.13 and the

boundary condition for which,
0<ec(t) < £(k(t)) V telt,,tpl

is feasible and the problem facing the central planner is

that of choosing a feasible trajectory for consumption per
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worker that is optimal in achieving some economic objective.

The economic objective of the central planner is as-
sumed to be based on standards of living as measured by
consumptipn per worker. In particular it is assumed that
the planner has a utility_function,u(c(t)), giving utility
at any time as a function of consumption per worker or a
disutility function measuring the squared deviation from
some desired time path of consumption. It is assumed that
utilities at different times are independent and that util-
ities at different times can be added, after they have been
suitably discounted to allow for the fact the near future
generations are politically more important than far future
generations. The rate of discount, p, assumed constant and
nonnegative, is the marginal rate of transformation between
present and future utility.

The problem of neoclassical optimal growth for an ag-
gregate closed economy with a finite time horizon and posi-
tive discount rate and the assumptions on the production
function previously mentioned is that of choosing a time
path for consumption per worker, c{t), such that the follow-
ing equatiocns are satisfied.

te

maximize J = | e Pt u(e(t))dt , (3.15)

%
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k=f(k) -k ~c (3.16)
k(b)) =k, , k(tp) =k, ,
0cclt) < £(k) ¥V telt otpl . . (3.17)

c(t) piecewise continuous,

A =r + 6,

The solution to this problem is an optimal path for con-
sumption per worker c*(t) and an optimal path for capital
per worker k¥(t) for all te[to,tf]. The solution depends
upon two functions f(.) and u(.), on the nonnegative param-
eters, 1. rate of discount p, 2. depreciation rate plus
~growth rate of labor, » = 8 + r, 3. 1lnitial stock of capi-
tal, 4. final stock of capital.

The Hamiltonian for the problem can be written,

H(k,c,m,t) = e PPlule) + n(f(k) - Ak - ¢)] (3.18)

where the adjoint variable is ﬂ(t)e'Pt.

The term in the brackets is the sum of utility and the
adjoint variable multiplied by the net investment per worker,
indicating an interpretation of w(t) as the inputed value
(shadow price) of additional capital per worker, measured
in terms of utility. The Hamiltonian is the inputed value
discounted to the initial time =zero.

As an initial sequence of numerical experiments
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illustrating the control algorithms appliéd to solve eco-
nomic models numerically, one may formulate almodel similar
to the type studied by Goodwin (30). This particular model
has linear production and capltal accumulation functions,
but the technique of obtaining the numerical solution is in
no way restricted to linear cases. These functions were
selected only as an initial illustration and will be fol-
lowed by studies of nonlinear relationships. This model
differs from that of Goodwin in that it has a quadratic
valuation function of the squared difference between per
worker consumption c(t) and a known desired per worker con-
sumption c*(t) rather than a log function. The function
c®(t) may be a derived function from optimizing on the sub-
unit level or it may arise from the subjective preferences
of the planners or pdssibly a subset of the planners.
Suppose for example that a group within the economic
unit, say the businessmen, or a sectoral group want c¥*(t)
to have a certain time path subject to the dynamic con-
straints of production and capital accumulation. They,
however, would accept as a compromise a path close to their
desired path in terms of the minimum of a squared deviation
from c¥(t). The objective is to choose c(t) as close to
c¥(t) as possible subject to the constraints of the model.

The variables are defined as:
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K(t) = aggregate quantity of the capital of the
economic unit,

c(t) =.aggregate consumption -of the unit,

L(t) = labor force = Loert >

k(t) = K(t)/L(t),

c(t) = C(t)/L(t),

Y(t) = output of the economic unit,

y(t) = Y(£)/L(%),

[to,tf] = planning horizon,

=~
]

initial capital stock,

(o)

Ke = final capital stock,
B = butput—capital ratio,
p = penalty constant.

Problem T-2 can then be formulated as follows:

by 2 2
minimize J = [  (c(t) - c*(t))“at + S(K(ty) - Kp)
tO
(3.19)
subject to: K(t) = ¥(t) - 1_é"%c(t) , (3.20)
¥(t) = BK(t) , (3.21)
K(to) = KO R K(tf) = Kf . (3.22)

The T-2 optimal solutlon may be computed directly from
the above formulation or computed after the problem has been

stated in per worker terms. For a representative parameter
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specification let r = .01, B = .25 and Lo = 10.00. Let

the desired control c*(t) be a given as a subsistence level
plus a linear time trend, c*(t) = 9.0 + .5t, and t, = 0.0,
tf = 10.0. If one allows for a 5 percent per year rate of
growth of output from the economic unit, then Y(10) = 165.0,
where Y(0) = 100.0.

This class of problems, linear dynamics, nonautonomous:
with quadratic objective functional and state variable ter-
minal constraints, represents one of the easier types of
control problems to solve, yet it is important in my énal-
ysis since certain types of two and higher sector models,
as will be considered later can be reduced to a problem like
problem T-2 but with a time varying output-capital ratio.
Both the conjugate gradient and the Davidon algorithms were
used to solve the problem T-2. In terms of the output var-
iable Y(t) and the adjoint variable w(t), the necessary

conditions are:

Y(t) = B(Y(t) - e(t) L ¥ty . ¥(0) = 100.0 (3.23)

7(t) = -Bw(t), =(10) = p(Y(10) - 165.0) (3.24)

g = H, = 2(c(t) - c*(t)) - n(t)L_Be" =0,  (3.25)
where

H = (c-c*¥)2 + n(t)(¥(t) - L, c(t)eTHB . (3.26)
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The penalty constant used was 3.0 and for both algorithms

the initial control used was co(t) = 9.0. The stopping rule
was a value of (g,g) less than 1.0 x 10_4. Valﬁes of the
‘functional J, (g,g) and the number of forward and backwérd
integrations per iteration are summarized in Table 3.3.

The conjugate gradient method with this and other experiments
was much more sensitive to the a-search direction parameter.
It required 44 integrations of the state and adjoint dif-
ferential equations. Most of these were required to de-
termine the search direction parameter.

The Davidon algorithm was much less sensitive to the
search direction parameter. It converged after three steps
and 13 integrations of the differential equations. Both
methods gave essentially the same results for the trajec-
tories for problem T-2. Results for various time points
are given in Table 3.4. The stepsize for the Runge-Kutta
integration was h = .1. An approximation of the computa-
tion time for the Davidon Algorithm was 18 seconds per
iteration. This includes CPU time and printing time. The
time per iteration varies dependling on how many linear'
searches must be cqmpleted in the iteration to compute an
optimal search parameter.

The trajectories for the time horizon of 20 and 30
years respectively for problem T-2 are listed in Tables
3.5 and 3.6.
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Table 3.3. Convergence results for problem T-2

Iteration Numbers

Number of J (g,8) z(igé?%.
C . Integrations
Davidon Method

1. 4 80.5861 263.433 -.0591
2. 7 14.7394 28.205 ~-.0988
3. 2 14.7370 .000001  -.0584

Conjugate Gradient Method

1. b 80.5861 263.432 -.0591
2. 8 16.2077 16570.00 -.0103.
3. 3 14.7370 .0110 -.0592
b, 9 14.7370 .00016 -.0544
5. 5 14,7370 .0246 -.0572
6. 2 14.7370 . 0557 ~.0566

>7. 3 14.7370 .0003 -.0582
8. 10 14,7370 .000003 -

.0584

One notes that the savings rate S(t)/Y(t) for the dif-
ferent time horizon differs. In the 10 and 20 year pléns
the rate decreases monotonically, while in the 30 year plan
it drops.to approximately .15 in the year 10 and remains
there until year 20 and then builds up to satisfy the

terminal capital constraint.
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Table 3.4. Optimal traj ectorles for problem T-2 w1th time
~horizon [0 10]
€ Y(t) e(e)  c(t) S()  S(£)/¥(t)
0.0 100.00000 6.32990 63.29900 36.70106 0.36701
1.2 110.53299 7.59810 76.89827  33.63472 q.3oh3o
2.0 117.08499 8.34780 85.16438 31.92061 0.27263
2.8 123.31299 9.03640 92.92993 30.38306 0.24639
3.6 129.24599 9.67470 100.29329  28.95270 0.22401
4h.4  134.89699 10.27130 107.33322 27.56377  0.20433
5.2 140.26900 10.83350 114.11751 26.15149  0.18644
6.0 145.35199 11.36750 120.70422  24.6477 0.16957
6.8 150.11800 11.87800 127.13794 22.98006 0.15308
7.6 154.52800 12.36920 133.45900 21.06900 0.13634
8.4 158.52399 12.84450 139.70041 18.82358 0.11874
9.2 162.02800 13.30660 145.88889 16.13911 0.09961
0.0 164.94199 13.75700 152.03839 12.90359 0.07823
Table 3.5. Optimal trajectories for problem T-2 with time
horizon [0,20] .
t Y(t) c(t) c(t) S(t) S(t)/¥(t)
0.0 100.00000 6.0300 60.29999 39.70001 0.39700
2.4 122.17999 8.5300 87.37193 34.80806 0.28489
4.0 135.73000 9.86300 102.65514  33.07486 0.24368
5.6 148.75000 11.02500 116.60017  32.14983 0.21613
7.2 161.51999 12.07000 129.71091 31.80908 0.19694
8.8 174.23999 13.03900 142.38425 31.85574 0.18283
10.4 187.39999 13.95000 154.78920 32.61079 0.17402
12.0 200.03999 14.83000 167.20775 32.83224 0.16413
13.6 213.31999 15.68500 179.70010 33.61989 0.15760
15.2 226.95999 16.51999 = 192.31906 34.64093 0.15263
16.8 241.04999  17.34999  205.23940 35.81059  0.14856
18.4 255.67999 18.16199 218.30997 37.37003 0.14616
20.0 271.G0000 18.97299  231.73671 39.26329  0.14488
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Table 3.6. Optimal trajectories for problem T-2 with time
horizon [0,30]
t Y(t) c(t) c(t) S(t) S(t)/¥(t)
0.0 100.00000 6.02600 60.25998 39.74002  0.39740
3.6 132.45999 9.54600 98.95912  33.50087  0.25291
6.0 152.06999 11.29500 119.93439 32.13560 0.21132
8.4 171.26999 12.80300 139.24905 32.02094 0.18696
10.8 190.64999 14.17700 157.93857 32.71143 0.17158
13.2 210.65999 . 15.47400 176.57512 34.08487 0.16180
15.6 231.68999 16.72899 195.53278 36.15721  0.15606
18.0 254.25000 17.95999  215.02007 39.22993  0.15430
20.4 279.08984 19.17699 235.16705 43.92279  0.15738
22.8 307.51978 20.38699 256.07788 51.44189 0.16728
25.2 341.82178 21.59200 277.80176 64.02002 0.18729
27.6 386.14380 22.79500 300.40308 85.74072 0.22204
30.0 447.98584  23.99699 0.27693

323.92529 124.06055 _

Over the ten year time horizon one can obtain a re-
gression of c(t) against Y(t) to determine the control var-
iable as a function of the state variable. A linear fit of
these data gives the relationship c(t) = —4.65605'+
110624 Y(t), with a coefficient of multiple determination,
R? value, of .99927 and a residual variance of .0037328.

Letting tip1 - ti = ih, a lagged relationship between

Y. 1 and ¢, for the interval [0,10] is gi&en by,

Cy = -3.812296 + .1065648 Yt—l

with an R® value of .999425 and a residual variance of
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.00236.

Por the twenty year horizon a linear relationship of
the data is given by the equation c(t) = -.241 + .0736 Y(t)
relating consumption per worker and aggregate output with
an R° value of .9865. TFor the thirty year horizon the above -
data relationship appears quadratic c(t) = -4.1781
+ .1201 ¥(t) - .000120Y2(t) with an R2 value of .99879.
This would imply that, using model T-2, a linear rule giving
the consumption per worker as a function of the cutput would
only be valid within a 20 year horizon. |

It appears ﬁhat most practical planning situations
would be within a small time horizon, since one may not be
able to obtain deterministic relationships over a long hor-
‘izon. For the T~2 problem c(t) approaches c¥*(t) in approxi-
mately 15 years, hence the transient terms are necessary in
this realistic optimal short range planning.

Control problem T-2 can be resolved analytically.

From the necessary conditions one determines c(t) and Y(t)

as,
c(t) = 9.0 + .5t + (1.25)(A)e-2HE (3.27)
Y(t) = Be'?9% 4+ 5.208te* 01t 4 115.45¢°01F
+ (6.51) (a)em-23 (3.28)

Where A and B are constants to be determined by the boundary
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conditions. For the time horizon [0,10]:and the given
parameters of the model, the constants have the following
values, 4 = ~2.13696 and B = ~1.5389. The value of J =
14.7429 and J - %{%(y(lo.o - 165.)° = 14.7375. This com-
pared with the computed value of 14.7370. This problem
T-2 was a good test of the computer code and also it indi-
‘cated the ease with which different parameter settings can
be made and the solution obtained by the numerical algo-
rithms used. This type of problem T-2 will be utilized
again in a suboptimization procedure of a two-sector model.
The suboptimization procedure will involve a time varying
output-capital ratio and will be discussed in Section C.

As a second sequence of numerical experiments, consider
the following model. This model was studied by Chakravarty
(16) and he considered a nonlinear welfare function and a
nonlinear production function. He showed that for a pro-
duction function of the form, Y = aKB where Y is the output,
K is the capital stock, and a and B are parameters that if
B = 1/2 it was possible to obtain a closed form solution for
the time path of capital stock. The B = 1/2 case was the
only nonlinear problem he discussed since he implied that
it was not possible to obtain closed form solutions for any
other cases. This model does not express the variables in
per worker terms. A modification of this model where per

worker variables are considered will be treated later.
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The control problem T-3 is formulated as follows:

| bt 1 1
maximize J = f e~ob I_—(C(t)) Mat (3.29)
t -1 :
(¢]
subject to
K(t) = eZb k(6)B(r, e"®)1"B - c(t) - sK(£) ,  (3.30
K(0) = K and K(tf? =K, . 0 (3.31)

Where the variables are:
J = an index of performance,
p = time rate of welfare discount,
C(t) = consumption at time t,
n = elaéticity of marginal utility with respect to
consumption, -
k(t)'= capital accumulation,
K(t) = stock of capital,
6 = rate of capital depreciation,
K(0) = K is the initial stock of capital,

K(tf) = Kf is the terminal stock of capital,

z = rate of neutral technical progress,

y = efficiency parameter,

B = elasticity of output with respect to capital,
LO = initial labor force,

r = rate of growth of the labor force,

[O,tf] = fixed time horizon.
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The form of the‘production function used 1s

¥(t) = F(K(t)) = eZby(k(£))Br ™H1P
= aeB%(x(t))B | (3.32)
where
a= yLOl— and .g = r(1-B) + z. .

The utility function

u(c(t)) = T%H(C(t))l"n where n >0 and n #1
(3.33)

has the following properties:

ur(c(t))

jv

0 C_>__O

U(C(£)) <0 C >0

iA

lim U(C(t)) = C(%) |
n-+0

An attempt has been made to gain insight into how
nonlinear specification of these fﬁnctions affects the time
paths of the optimal solution trajectories. Penalty func-
tions are used to handle terminal constraints on the state
variables. The parameter values for the model are given
in Table 3.7.‘

Selected values of the optimal trajectories for prob- -
lem T-3 are given in Table 3.8.

The value of the functional was 98.182 and a fixed
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Tdble 3.7. Parameter values for Model 'I'-3

§ = .05 o = .03 n =.9 r = .025
K, = 15.0 z = .01 Y =427 L, = 15.0
y = .285 Yo = F(Kp) = 7.042
Complementary values of a and B
B . a
.60 ' .8419
.75 .5601
.80 -4900
1.00 .2850

aThis allows a 5% growth per year in output over the
planning horizon

Table 3.8. Optimal trajectories for problem T-3 with
B = .6, a = .8419 and time horizon of 10

Time Output Capital Consumption Adjoint Savings

t Y(t) K(t) c(t) Variable Rate
n(t)

0.0 b, 275 15.000 2.255 479 JAh72

AU 4,395 15.503 2.369 LY 461
1.2 4.636 16.497 2.575 415 445
2.0 4.878 17.485 2.769 .377 432
2.8 5.122 18.470 2.973 .344 119
3.6 5.367 19.440 3.200 .314 .403
by 5.610 20.374 3.455 .286 .384
5.2 5.845 21.248 3.737 .260 .361
6.0 6.071 22.039 4,043 .238 .334
6.8 6.283 22.722 4,369 .217 .304
7.6 6.U77 23.277 4,709 .197 .273
8.4 6.651 23.683 5.060 .179 .239
9.2 6.798 23.921 5.419 .163 .202
0.0 6.917 23.970 5.783 .148 .164
J = 98.182 " ' ' o




99

penalty constant of 5.0 was used with an initial control
variable of Co(t) = 1.0. In all the numerical experimenta-
tion the Davidon algorithm was much less sensitive to both
the initial control estimate and the search direction param-
eter. In every case 1t converged with less iterations than
the conjugate gradient method. The restart feature of the
Davidon method proved to be an asset rather than a practical
necessity. Restarting the search direction in a negatiVe
gradient direction every U to 6 iterations proved completely
adequate in my computational experience.

The shadow price of additional capital measured in
terms of utility is seen to start out at .U479 and de-
creased to .1U48 as the terminal constraint on capital is
satisfiéd. The savings rate decreases from .472 to .164
over the 10 year horizon.

The elasticity of output with respect to capital, B,
is now varied while holding all other parameters constant.
In varying B the parameter "a" is chosen in a éomplementary
manner to maintain a constant initial level-of output Y(t)
with the different specifications of the production func-
tion. The optimal saving rates at various time points are
computed for different B values and presented in Table 3.9.

The behavior of the savings rate agrees with tﬁé ex-
pectation that when attempting to hit a certain target rate

of growth of output (in the example of problem T-3 5% per
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Table 3.9. Problem T-3 optimal savings rate with various
' values of B and a and planning horizon of 10

years . ...

t B=.6 B=.75 B=.8 B=1.0
time a=.8419 a=.5609 - a=.4900 a=.285
0.0 472 .548 .609 .739
A4 461 541 .578 .664
1.2 s .518 .553 .637
2.0 432 .hoy .531 .626
2.8 419 LY .513 .589
3.6 .4ok4 453 LAT77 .523
b,y .384 L2l 435 482
5.2 .361 .389 .394 Jb21
6.0 .334 .344 344 .329
6.8 .305 . 287 .279 .220
7.6 .273 .217 .197 .100
8.4 .239 .135 .097 .033
9.2 .202 .038 .002 .002
10.0 .164 .000 .000 .000

year), an economic unit with more productive capital should
save more in the earlier years of the pianning horizon. This
example also i1llustrates the need for obtaining good esti-
mates in the production function parameters as the opﬁimal
trajectories change with respect to different values of the
parameter B.

Table 3.10 shows changes in the savings rate under vari-
ations in n. All other parameters are as given in Table 3.7 .

with B=.6 and a=.8419. The optimal savings rate for various
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Table 3.10.  Savines rate and thc functional value for dif-

Terent values of n for problem 'I'-3 (B=.6 and
a=.8419)

i n=.2 n=.06 n=.8 ‘ n=.9
0.0 543 Y 493 472
1.2 482 540 ATy by
2.4 .43y .99 LAahs 426
3.6 .387 456 418 Lok
4.8 .347 406 | .38 .373
6.0 .309 -337 .338 .334
7.2 .268 .252 .280 .289
8.4 .233 .153 . 7.213 .239
9.6 .192 .035 L1314 .184

10.0 .178 .000. .105 <164

J=30.78 J=36.27 J=55.84 J=98.18

time points are summarized in Table 3.10.

Changes in the values of n appear to have relatively
less effect on the savings rate than do changes in B.

Using the notation of the control problem defined in
Equations 2.1 and 2.2, consider now the change in fthe
Hamiltonian over time. Since in general H is a function of
X, u, » and t, one may compute dH as follows, where in a one

dt
scector model all functions are scalar functions.

Gl n, Al s, s Al al
at " ax *tum vt Aot

3 ., 3H - . 8H
[ﬁF + a1f(x,u,t) + Y
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Along the optimal trajectory the first term vanishes be~
cause of the adjoint differential equations. Thé second

term vanishes because elther the partial derivative %% =0

for an interior solution or'ﬁ = 0 for a Boundary solution.
Thus, along the optimal trajectory'%% = %%, If the problem
is autonomous in that both L and f show no explicit de-
pendence on time, then %% = 0 and along the optimal tra-
jectory the value of the Hamiltonian is constant over time.

Problem T-3 is ﬁot an autonomous problem, since the
Hamiltonian function depends explicitly on time. To see
how the Hamiltonian function behaves for the T~3 problem,
for selected time points its value was computed for certain
feasible values of the control and state variables and the
optimal values. These are presented in Table 3.11 together
with (g,g) where,

.10 T
= 2H 3H
(g,8) . Io [Bu sgJdt .

Next a series of computations with different growth
rates on output Y(t) were considered. The results of this
experimentation are given for selected time points in
Table 3.12 and Table 3.13. The values of the parameters
are as given in Table 3.7 with Yf, final output, computed
with 5%, 6%, 7% and 8% growth rate per year.

As seen by Table 3.12 and 3.13, the time paths of con-

sumption and saving rate vary with respect to changes in the
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Table 3.11. Values of the Hamiltonian for selected time
points for problem T-3 with B=.75 and a=.5609
t . 4th iteration 8th iteration 12th iteration
0 12.21 11.39 11.57
1.0 11.87 11.12 11.29
2.0 11.52 10.88 11.02
3.0 11.14 10.63 10.74
4.0 10.76 10.37 10.47
5.0 10.39 10.12 10.20
6.0 10.04 9.89 9.94
7.0 9.70 9.65 9.67
8.0 9.39 9.40 9.40
9.0 9.09 9.16 9.15
0.0 8.81 _ 8.92 8.89 ‘
(g,g)=.368 (g,g)=.042 (g,g)=.5%x107"
Table 3.i2. Time paths of consumption where final target
output Yf is computed using different growth
rates per year
t C(t) C(t) c(t) c(t)
5% 6% 7% 8%
0.0 2.25 2.12 1.96 1.62
1.2 2.57 2.37 2.18 1.90
2.0 2.76 2.56 2.34 2.05
3.2 3.08 2.88 2.63 2.27
b,y 3.46 3.19 2.95 2.52
5.6 3.90 3.55 3.26 2.77
7.2 4. 55 4,12 3.70 3.11
8.8 5.23 4,79 4,24 3.52
10.0 5.75 5.32 4.71 3.91
J=98.18 J=97.37 J=96.44 J=94.90
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Table 3.13. Time paths of output Y(t) and savings rate
: .s(t) for target final output Y, determined

t Y(E) s(E) O Y(E) Us(E) Y)Y  s(E) o Y(E) s(t)
o 5% ... . . Y/ 1 A -
0.0 4,27 .48 4.27 .50 4,27 .54 4.27. .62
1.2 L.64 .45 4.67 .49 4,71 .54 4,77 .60
2.0 4.88 .43 4.94  .n7 5.02 .53 5.12 .60
3.2 5.25 .41 5.36 .46 5.50 .52 5.68 .60
4.4 5.61 .38 5.79 .45 5.99 .51 6.27 .59
5.6 5.96 .34 6.23 .43 6.51  .u9 6.90 .59
7.2  6.38 .29 6.81 .39 7.23 .49 7.83 .60
8.8 6.72 .22 7.37 .35 7.99 Y 8.85 .60 -
10.0 6.91 .16 7.77 .31 8.59 .45 9.67 .60

growth rate of the final target output Y The saving rate

£
in Table 3.13 for an 8% per year rate of growth is seen to
be almost constant at .60. Certainly if an economic unit
can survive on the low time path of consumption as in the 8%
per year growth rate their potential for future consumption
would increase.

As seen in Table 3.14 the more that capital is needed
to attain the various growth rates on the target final out-
put, the larger is the value of the adjoint variable value
or the shadow price of capital.

Problem T-3 can be analyzed in per worker terms by mak-

ing the following changes. The new variables are defined as:
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Table 3.14. Time path of adjoint variables with different
final target output growth rates

t m(t) T(t) w(t) m(t)

5% 6% % 8%
0 4781 .5112 .5505 .6251
1.2 141 L4431 , L4773 5425
2.0 .3768 " .4036 . . U4352 ' .4953
3.2 .3276 .3517 .3802 4343
4 4 .2852 .3073 .3335 .3827
5.6 .2484 .2690 .2933 .3388
7.2 .2065 . 2257 .2482 .2899
8.8 .1710 .1895 .2108 .2498
10.0 .1478 1661 .1869 .2243
c(t) = C(t)/L(t) = consumption per workef,
k(t) = K(t)/L(t) = capital per worker,
i(t) = I(t)/L(t) = investment per worker.

Using the utility function where argument is per worker con-
sumption, the performance functional with the penalty term
becomes,

t

f

maximize J = [ e Pt Ti—(c(t))l Tat - g(k(tf) - k)2
t -1
o

Substituting K = kL + kL into the Equation 3.30 and
dividing by L, the per worker capital accumulation differ-

ential equation is derived.
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k= 25 kB - o - (str)K (3.34)

0<B=<1

| _ K(0) _ K(tp) _
k(O) = E'(—(')T = kO and k(tf) = m —- kf

If the adjoint variable is defined as 7 = qe~pt, then

the Hamiltonian function can be written as,

lH(k,q,c,t) = e-pt[%igﬁ + q(eZtYkB - ¢ - (8+r)k)]
(3.35)
The adjoint differential equation is:
Q(gemet) = - 2B (3.36)
implying .that
q=al(s +r +p) - yBeZt P17 (3.37)

The first order condition for an interior minimum,

oH
3¢ = 0 implies that q =c¢™@ . (3.38)

Differentiating 3.38 with respect to time and substi~
tuting into 3.37, the two differential equations that the

optimal trajectories {c(t),k(t)} must satisfy are derived,

t B—l]

= [(s+r+p) -~ &Z

1
s
oo .

yBk (3.39)

Kk = Yezth

- ¢ - (8+r)k
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Suppose we allow z = 0, assuming no neutral technical
progress, tf—>°° s and temporarily ignore the condition of

a given initial stock of capltal per worker. Then one pos-
sible solution to Equation 3.39 is that for which neitﬁer
consﬁmptibn pef worker nor capital per worker change over

time.
c=k=0 .

"In order that consumptilon per worker be constant it is

necessary from Equation 3.39 that k = ki, where

YBk,B"1 =8+ +p (3.40)

and capital per worker will remain at k, if consumption per

worker is

cy = yk:B - (s + )k, . (3.41)

The equilibrium k(t) = k, and e¢(t) = ¢,, thus satisfies

all the necessary conditions except the initial boundary
conditions. This equilibrium {ki,c,} is the balanced growth
path, since along 1t capital per worker and consumption per
worker are constant. Hence total consumption

c(t) = e(t)L(t), total capital K(t) = k(t)L(t) and total
output Y(t) = f(k)L(t) = kaL(t) all grow at the same rate,
namely the rate of growth of the labor force. The balanced
growth path is called the modified golden rule growth path,

since it modifies the golden rule to allow for nonzero
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discount rate.

~

1im k, = k . (3.42)
p+0 ' _

If one assigns the parameter values B = .6, § = .05,
r = .025, y = .285, p = .03 as in Table 3.7 and z = 0.0,
then the balanced growth paths may be computed from Equa-

tions 3.40 and 3.41 as follows,

(.285)(.6)k,"“ = .05 + .025 + .03
k, = 3.385

¢y = (.285)(3.385)-6 ~ (.075)(3.385)
¢y = .338

Now consider the optimal path when explicit account is
taken of the initial condition on capital per worker and
z = 0.

From the differential Equations 3.39

c=0 if Bl s+ 1+ o
¢ >0 if yBEEl s s 41+,
e<0 if Bl <84 + o0

or

0 if k =k

Q o
il

>0 if k < k,
<0 if k > k,

and
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y . B

k =0 if ¢ = yk- - (s+r)k

v

0 if ¢ < ykB - (8+r)k

A

0 if ¢ > ykB - (s+r)k .

These relationships are indicated in Figure 3.1. The
two curves é and ﬁ divide the figure into four regions, and
the behavior of ¢ and k is indicated in each region by a
pair of arrows. The two curves intersect at (k,,c,) which
is the balanced growth path.

¢

(k,(t),c,(t))

B
¢ = vk ~ (8+r)k

k=0

b

k,

Figure 3.1. Phase diagram for problem T-3 where z = 0
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The local stability of the solutions to the éutonomous
(since z is assumed to be zero) differential Equations 3.39
can be analyzed from the characteristic roots of the matrix
of coefficients obtained by a linear expansion of these
equations about the eQuilibrium point (k,,c,).

Expanding about the equilibrium point (k,,c,) one ob-

tains:
- 1 B-1
ey - H[(6+r+p) - yBk, 1(e-c,)
c B-2 |
+ HL(y)(B)(B-l)k, (k-k,) . (3.43).

By Equation 3.40 the first term vanishes and,

ez 4330 .285)(.6) (-.4)(3.385) "1+ (x-3.385)

¢ = ~.00465(k-3.385)

Kz ~(cmc,) + [yBKC L = (s+r)1(k-k,)
k = -(c-c,) +lp(k-k,)

k ¥ —(c-.338) + (.03)(k-3.385)

The behavior of the system around (k,,c,) is determined by

the characteristic values of the matrix A, where A is given

0 -.00465
A =
-1.00 .03

The characteristic values are determined as x.1 = ,0848

by:



111 -

and x, = -.0548 and two characteristics vectors are,

~.0548 : +.0848

" (1.0 ) "2 T (1.0 '

Since these characteristics roots are real»and opposite'in
sign, the equilibrium point of balanced growth at (k,5c,)
is a saddle point, the stable branch of which is labeled
(ky(t),c,(t)) in Figure 3.1. This stable branch consists
of all points that eventually reach the balanced growth
equilibrium.

The path of optimal economic growth must lie along the
stable branch, where given any initial level of capital per
worker ko, the unique optimal initial consumption per
worker is the point on the stable branch associated with
ko. The optimal growth path is a unique segment of the
stable branch, as any other path would eventually fail to
satisfy the necessary conditions for an optimum involving
either inflexible points in the upper left of Figure 3.1
or inferior points in the lower right of the quadrant. The
stable branch i1s monotonic increasing, so if ko < k,, then
both ¢,(t) and k,(t) increase over time, moving up the
stable branch to the balanced-growth equilibrium while if
ko > k, the reverse is true. With a finite horizon there
is an additional condition,

-0t

e " T qtp)(k(ty) - k) = 0 . (3.44)

)



112

It has,béen sﬁown (61)_fhat the optimal path satisfies

" the "turhpike'property". Asvthe time horizon [Q,tf] bééomes 

sufficiéntly long, the optimal time paths for capital per

worker and for consumption per wofker spénd an'arbitrarily ‘

large- portion of the time close to the balanced growth

equilibrium. bFor example starting from its initial level

ko capital per worker moves toward k, and stays neaf there,

eventually moving away from k, to sétisfy the terminal re-

quirement k(tf) = K-
With the parameter values given in Table 3.7 and

B'= .6, a = .8419, and the growth rate of labor r = .025

per year, it appears'from my computations that the ten year

horizon does not allow the turnpike property to manifest

itself for problem T-3. Consumption per worker at t = O

is ¢(0) = .146 and'at t = 10.0 has increased to c(10) = .27,

where the equilibrium point ¢, = .338 has not been reached.

Likewise with k(t), k(0) = 1.0 and k(10) = 1.2 where k,,

the equilibrium point is k, = 3.385. It would appear that

a time horizon of approximately 20 years would be needed'to

exhibit the turnpike property of problem T~3. The balanced

growth solution is given by,

c(t) (.338)e'025t(15.0) ,

K(t) .025¢%

(3.385)(15.0)e

For the ten year horizon the values k(t) and c(t) are
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increasing along the stable branch of Figuré 3.1. They
start at ¢(0) = .146 and k(0) = 1.0 and within the‘ten
year horizon do not attain the equilibrium value, k, =
3.385 and ¢, = .338.

Problem T-3 will be considered again in a suboptimiza-
tion procedure with a two-sector model that is treated in
Section C.

Jorgenson (38), Sengupta (64) and Goodwin (30) con-
sidered the idea of a dual economy framework. The economic
system may be divided into two sectors, the advanced (manu-
facturing) and the backward (agricultural) such that the
production in the former is a function of labor and capital
with constant returns to scale, whereas in the latter sec-
tor, production is a function of land and labor with dimin-
ishing returns to scale.

The Jorgenson model of a dual economy in its develop-
ing phase may be summarized as follows:

a. The development of the advanced sector, also called
manufacturing, is possible only if an agricultural surplus
eventually emerges in the backward, also called agricultural
sector. If no such surplus comes into existence, the en-
tire economy remains stagnant, producing only food and other
products of the backward economy.

b. When the output of the agricultural sector attains

'and then exceeds the minimum subsistence level of food
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consumption necessary for population to grow at its maxi-
mum raté, an agricultural surplus emerges. As a result,

total population (i.e. labor) P(t) = P(O)eEt grows at the
méximum rate of net reproduction and hence, a part of the
labor force may be freed from the agricultural sector to

produce goods in the advanced sector.

c. It is assumed that all income arising in the
agricultural sector either as wages to labor or rent to
landowners are entirely consumed while the output of the
advanced sector (X(t)) is partly consumed (Xc(t)) (both
directly and indirectly) through trading for food produced
in the agricultural sector and partly invested (I(t)).
Capital accumulation ﬁ which is possible only in the ad-
vanced sector, is defined as investment (I(t)) less depre-

ciation 8K(t) where § is the constant rate of depreciation.

X(8) = X_(5) + I(t) = X_(6) + K(6) + sK(5) -

d. The production functions for the agricultural Y(t)
and manufacturing X(t) sectors are assumed to be of the

Cobb-Douglas form with neutral technical changes.

T(t) = *Pat B |

-0
ekt o, 1

X(t) KM .

where a, B, 2 and o are known estimated from the sectors

in question. Total population P(t) is made up of
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agricultural labor A(t) and manufacturing labor M(t).

Given the agricultural production function, the re-
quired rate of growth in the agricultural labor force
necessary to maintain the growth of the agricultufe surplus

is computed in the model as:

(e—ajt
1-B
A(t) = P(0)e

Since the total population is growing at the maximum rate,

the size of the manufacturing labor force is given by:

M(t) = P(b) - A(E) = P(0)[eSF - o 1B 7

One may obtain an expression for the aggregate con-

sumption C(t) as,
C(t) = Y(t) + Xc(t)
By using the production functions in the two sectors

and substituting into the previous equation, we obtain the

differential equation

ezt 1 p
c(s) = e**[P(0)e I-5’ ]
E-Q. t l=0 .
+ eA*xO[p(0) (e°F - TB )T k(o) - K
B (Ezﬁ)t 1_0
c(t) = P(0) " ett + p(0) T kO[St - &' 1B)

- K(t) - oK



116

Now we may formulate an index of performance either with a
utility function of the argument C(t) or a disutility func-
tion describing deviation from a known desired time path. |
For this case let us consider the former:
| by
minimize J = [ L(C(t))e
o

2

pt
f),

dat + %(K(tf) - K

where K(0) = K, and K(tf) = K, represent boundary condi-

f
tion for the problem where Kf may be computed from a given
target growth rate. Sengupta (64) noted that this problem
was too complicated and nonlinear to solve explicitly ana-
lytically. He analyzed the problem in various cases using
linear approximations to the actual problem.

The previous férmulation is isomorphic to problem T-3
and the computational procedure to numerically solve 1t is
identical to that used in solving T-3. I make no computa-
tions, but merely point out the similarity of the two

problems.

C. Two~Sector Optimal Growth Models
To begin the study of the control problem applied to
two-sector models, consider the model of development and
planning for India which was formalized by Mahalanobis (48).
It is studied as an indication of how one might proceed
with other more complex models. The model distinguishes

two sectors, one producing investment goods and the other
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producing consumption goods on the assumption of a closed .

economy. The increase of real national output depends on

the allocation of investment to each sector. The main pol-

icy problem is how to determine the optimal allocation of

investment between the two sectors under alternative plan-

ning horizon and various sets of values of the output-

capital coefficients.

The two sector model may be specified in continuous

form as follows:

I(t)

c(t)
A, A

i

Y(t)

1(0)

By I(E) ; (3.45)
AcBéi(t) s (3.46)
=1 , (3.47)
c(t) + I(t) , (3.48)
I, » Co)y=c_ . (3.49)

The variables are defined as,

I(t) =
C(t)

Y(t)

Ai =

Investment goods at time t,

Consumption at time €,

Income at time ¢,

Proportion of total investmeﬁt allocated to pro-
duce investment goods,

Proportion of total inveétment allocated to pro-
duce consumption goods,

Output-capital ratio for investment goods,
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Bc = Qutput-capital ratio for consumption goods.

As indicated, the policy problem which this model is to
help solve is that of providing a means to'compute the pfo—
portion of total'investment which should be allocated to
produce investment goods, Ay in order to maximize aggregate
income Y(tf), giyen'the planning horizon [O,tf].

The output-capital ratios are assumed known and based
on production situations in each sector and given by

Bi =

-2 and B, .3 (27). From Equations 3.45 to 3.49
I(t); C(t) and Y(ﬁ) can be determined in terms of Ay and

. t. Once the planning horizon [O,tf] has been specified the
necessary condition for a maximum of Y(Ai;tf),

T YOy3t) =0, (3.50)
ax i’°r
allows one to compute the value_;\i which gives the maximum
value of Y(Ai;tf). The meaning of ;i is the proportion of
total allocatable investment to be made in investment goods
to maximize income Y(Ai;tf) in tp years. In the above form-
ulation the implicit welfare function includes only one
element, the maximization of Y(Ai;tf).

The preceding two-sector model can be linked to control
problem T-2 or T-3 in the following manner. Add Equations
3.45 to 3.46 and use the time derivative of Equation 3.48
and Equation 3.47 to obtain the following differential

equation,
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Y(6) = [3;B, +(1 - 2;)B_JI(t) (3.51)

A . = . -
where 0 < A, < 1. Let B(Ai) A;B; + (1 - 1,)B, and from

Equation 3.48, one obtains the differential equation,

¥(t) = B(3,)(¥(t) - C(8)) . (3.52)

t
Define c(t) = C(t)’Loer as consumption per worker where
LO is the initial labor force and r is the growth rate of
labor. Form the integral functional,
e 2
minimize J = [  (c(t) - c*(%)) dat , (3.53)
o]

where c¥(t) is a known desired consumption per worker tra-
jectory over-[O,tf]. Then one may specify the boundary

conditions, where Yf is a terminal target output as,

Y(0) = Yoo, T(tp) = Y. - (3.54)

This extension of the Mahalanobis model has two con-
trol variables c(t) and a;(t) and one state variable Y(t).

Classify this model as problem T-4.

t
f .
minimize J = [  (e(t) - c*(t))°at (3.55)
(@]

subject to:

Y(t)

B(2)(Y() - e(t)L ™)

Y(0) Yo and Y(tf) =Y 0

f i

IA
>

A
]—J
L]
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One notes that there are two parts to the economic .
meaning of the optimization of this two-sector probiem.

1. To determine the optimal aliocation between sectors,

'Ai(t), over the planning horigzon.

2. To determine the optimal allocation between con-
sumption and production subject to the desired
consumption and the dynamic constraints and bound-
ary conditions of the system.

One approach to consider this kind of problem is by a
decomposition procedure. Rather than treatvxi(t) as a con-
trol variable in problem T-U, one may choose a value for i
to optimize Y(t) as in the original Mahalanobis problem or
by any other subunit optimization procedure where Ai(t) is
the decision variable. One then obtains various values of
A

; over subintervals of the planning horizon. That is to

say A ; 1s constant over subintervals of [0,t.] such that,

-Xi=zl t e Tl
=Z2 te T2

= 7 te T

n n

where Tl’T2’T3""’Tn form a partition of [O,tf] and

Zl’ZZ""Zn are constants such that
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0<Z, <1 for J =1i,2,...,n.

J

Once the Zj have been chosen, B(Ai) is completely determined.
B(Ai) = ZjBi + (l—Zj)Bc for t e TJ' Tbis interpretation
gives a step funqtion time varying output-capital ratio,
B(2;), and with these modifications the problem T-4 is a
slight extension of problem T-2 as treated in Section B.

If the performance functional, Equation 3.53, is given

in terms of utility,

b

maximize J = [ L(e(t),¥Y(t))Xt . (3.56)
0

and B(Ai) is computed as indicated previously, then the
two-sector problem reduces to the T-3 problem as treated
in Section B. Classify this two-sector utility problem
as T-5.

The optimal solution of this modified two-sector model
T-4 may not be identical to the solution of the T-U4 problem
where Ai(t) is treated as a control variable. However
trade offs may be made between the subunit and overall ob-
Jjective functions such that a reasonable approximation is
attained. Here the modified control problem solution is
optimal consistent with the subunit decisions concerning
Ai(t).

If there is a central planning agency at the national

level for a country it may not be the most efficient for the
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agency to make all detailed decisions concerning all the‘
controls. The central agency may have a limited knOWledge
about the detalled parameters at the subunit (regional or
sectorial) levels,‘partiéularly when some.of the parametérs'
are subject to dynamic Shifts.

. One could however, visualize two alterhative ways df
synthesizing subunits into a single national policy model,
assuming each subunit appropriately defined can be regarded
as a decision-making unit. One is to specify a feam de-
cision for national policy éroblems so that the optimizing
considerations of all the subunits are incorporated in the
one national model. An example for a simple caseAis the
two-sector model T-4 where all the subunit decisions are
made within the model, the optimal time paths for Ai(t),
¥(t) and c¢(t). Alternatively, one can specify a suboptimi-
zation or multiphase decision model at the national level,
where the various subunits form different phases. The
central decision making agency itself may form one phase
in the sequential scheme of the decision making.

If each subunit is required to fulfill a part of the
national goal and also a subunit goal which is specific to
the unit itself, care should be taken to ensure that the
controls chosen by different subunit policy makers are com-
patible among themselves and in relation to the national

targets set up. In the general case the team decision
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problem becomes one of a nonlinear time-staged .programming
proﬁlem or a control problem with large dimensions. In
view of the data requirements it appears that the formula-
tion of a‘detailed'multisubunit growth model is a véryﬁdif-
ficult task in most countries (27). Also the cost and the
numerical difficulties involved in the computation lncreases
rapidly as the number of subunits increase. The computa-
tional difficulty of solving control problems seems to in-
crease rapidly with the number of control variables.

Chenery (18) and Sengupta (6Y4) suggest as an alternative
the procedure as mentioned before of a suboptimization de-~
cision problem in a multiunit framework. To emphasize the
idea of sequential planning by stages, one may start in the
first stage with a dynamic macroeconomic decision pfoblem
at the national level, an aggregate growth model with‘a
long planning horizon of ten to fifteen years.

At the next stage one considers problems of optimal
decision making at subunit (bossibly sectorial) levels. An
objective function different from that in the first stage
could be selected at this stage with a short planning hori-
zon of three to five years. Any deviation of the observed H
solution from the planned targets at the end of each short
planning period in the second stage could be utilized to

revise the initial first-stage decision and perhaps update

the general model. This revised first-stage decision could
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then be used in the second-stage model to get an improved
decision for the next time horizon of the subunit. This
multistage suboptimization procedure could be extended into
additional units. Problem T-4 simply involvés subuniﬁ de-
cisions on Ai(t),,the»optimal allocation as between‘the.two
sectors and c¥*(t), the desired consumption per worker tra-
jectory. This procedure allows one to work with a generai
control problem less difficult than the one generéted by
the team decision approach. However the solution tq the
suboptimization form of the problem is not optimal in the
sense of the team decision problem since it allows for com-
promises and trade offs between the general and subunit
objective functions. Changes made in the subunit decision
variables are reflected in the value of the general ob-
Jjective functional.

As a numerical example of how one might proceed with
this suboptimization process, consider the model T-4. Sup-
pose that Bi = .2 and Bc = .3 are determined from the sec-
tors in question. The alloéation ratio Ai(t) is choseﬁ for
subintervals of a 15 year horizon by an independent subopti-
mization process as mentioﬁed and the values of Ai(t) ére

given as:

A =2 if 0 <t

fA

5,

= Z if 5 <t < 10,
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Z 1f 10 < t < 15,

0<%, <1 J=1,2,3

J

The output-capital ratio is defined over [0,15] as,

A = -
B( i) kiB + (1 Ai)Bc

i

There are two subunit decisions iﬁ this example, one of
choosing Ai has been made; the other is that of choosing
c¥(t). The variable c¥(t) represents the‘desired con-
sumption per worker trajectory. Suppose that a subunit of
the economic unit in question, say the businessmen, wish a
given desired path c¥(t). Now the central planning authority
can take as given Ai(t), the allocation ratio between sec-
tors, and c¥(t), ‘the desired consumption per worker tra-
jectory, and Yf the desired final output of the complete

unit, and solve the following problem,

te

minimize J = [  (e(t) - c*(t))2dt
: o

rt

subject to Y(t) = B(x;)(¥(t) - c(t)L &)

Y(0) r

YO and Y(tf) =Y
which is a slight extension of problem T-2. Changes made
in c¥(t) or Ai(t) are reflected in J. If J is not small

enough then compromises from sybunit optimal values must

be made in either c¥*(t) or xi(t) and then J recomputed.
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Thﬁs by a series of trade offs from the subunit optimal
~values the overall "best" can be obtained for the compléte
unit. The "best" is measured by means of the smallest
functidnal value J consistent with the submitted current
subunit control values of c*(t) and Ai(t). To illustrate
how c¢(t) and J change with respect to Xi’ the optima} con-
trol c¢(t) and functional value were computed for three se-

quences of values of A, with c¥(t) held as c¥(t) = 9.0 +

i
.5t, a subsistence term plus a linear time trend. The se-
quence of Ai for this iliustration were»not selected as
optimizing subunit values but simply values close to its
maximum or minimum with swltches between these values and

the value Ay F 1/2 for a comparison.

1. Equal allocation iy = 1/2 for 0 < t < 15.

2. Low a; = .1 for 0 <t <10 then high Ay < .9 for
10 < £ < 15.
3. High a; = .9 for 0 < t < 10 then low A; = .1 for

10 < t < 15.

The parameters used for the computation are Yo =

£
on Y(t)), t =0, t

100.0, Y, = 212. (which allows for a 5% growth rate per year
e =15.0, L_=10.0, r = .01 and pen- |

alty constant is 3.0. This computatignal example is gilven

simply as an illustration of how one might use the sub-

optimization procedure and how certain of the controls are

related. The value of J reflects how the subunit decisions:
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affect " the complete unit model.v

One noteé from Table 3.15 that sequence 2 has clearly
the smallest J value. If that dJ Vélue were not. small
ehough, then compromises would have to be made in the §ub—'
unit optimal values, c*(t), Ai(t) or possibly the terminal

target constraint Y(tf) = Y_, and the general model recom-

by
puted. Also J can be computed as a function of the

switching time t.. Various computations can be made to

1
determine the switch time which gives a minimum J.

Table 3.15. Conéumption per worker c(t) for three sequences
of values of the allocation ratio Ai

1. 2. 3.
xi=1/2 te[0,5] Ag=e1 te[0,5] A4=-9 te[0,5]
=1/2 te[5,10] =.1 te[5,10] =.9 te[5,10]
=1/2 te[10,15] =.9 te[10,15] =.1 te[10,15]
t c(t) c(t) c(t)
0.00 6.09 7.31 .04
1.80 8.01 8.50 7.39
3.60 9.57 10.0 9.05
5.25 11.0 11.2 © 10.5
7.05 S12.1 12.3 11.7
9.00 . 13.2 13.3 12.9
10.80 14,2 14.3 13.8
12.50 15.1 15.2 14.9
13.65 15.8 15.8 15.6
15.0 16.4 " 16.5 - 16.3

- e e Em g am mm em e e e Gw Gm amemEe e en e e mm Ge an s 6 s mE v @ e e

J=17.639  J=9.50 . 3=33.43




128

A more general two-sector model will now be considered
which generalizes the neoclassical growth model of Section
B'by allowing for two séctors using differenf techniques of
production. No computation will be performed on this and
extensions of this model. Rather it will be indicated how
the nodel could be decomposed similar to the procedure fdr
problem T-4 and thus solved by identical computing proce-
dures as was done with problem T-2 and T-3. In this gen-
eral two-sector model we are not limited to linear pro-
duction relationships. One sector produces a homogeneous
capital good and the other a homogeneous consumption good.

Let Yc(t) be the output of the consumption good at
time t, and Yi(t) be the output of thé investment good at
time t,'GNP at time t, valued in terms of the consﬁmption

good is-

¥(6) = ¥ (£) + pY (8) , (3.57)

where p is the price of the investment good in terms of the.
consumption good.

Bach sector produges its output using two factors of
production, capital and labor, as determined by the produc-

tion functions

Yj = FJ-(KJ.,LJ.) s j=c,1 (3.58).

where Kj(t) is the capital employed in sector j, and Lj(t)

is the labor employed in sector j. Assume that each of the
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production functions F_(.,.) satisfies the neoclassical

assumptions representeg by Equation 3.6 and Equation
3.7. Also, the prbduction functions exhibit'no exterpal—'
ities in that thé output of one secto£ does not depend di-
rectly upon the ouﬁput or input of the other sector.

The factors of production are homogeneous and can be_

freely shifted between sectors. Assuming both factors are

fully employed, then one has

Kc(t) + Ki(p) K(t) , (3.59)

L,(t) + Li(t) L(t) ,

where K(t) is the aggregate stock of capital, and L(t) is
the total labor force available at time t. The total capi-
tai stock is augmented by investment and subject to depre-

ciation at the constant rate 6,.

K = Y, - oK (3.60)

while the labor force grows exponentially,

L =L . (3.61)

The model can be reformulated in terms of per worker

quantities.
Yo Kc ¢
i: = fc(kc) =7 (f_, 1) |, (3.62)
Cc
Yy K1
g = f3(ky) = Fi(g=s 1)
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The variables kc and ki are sectoral levels of capital per
worker and lj is the proportion of the labor force allocated

to sector j.

-
|v
o
)—{D
O
H
<
0]
o
w
)_J

and

1 +1, =1.0 (3.63)

Consumption per worker is given by the equation,

Y
- c _ 2 £h)
e e == f - .U";/
Vo = T lc C(kc) (3
Investment per worker is,
Yi M

Gross National Product per worker in terms of consumption

goods is thus

y=y, tpy; > (3.66)
and aggregate capital per worker in the economic unit ist

k =

=

= k.1, + kil (3.67)

so from Equation 3.60 one obtains the differential equation,

k = y, - (8 + o)k . (3.68)
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The problem of optimal control for the two-sector model

is then the problem of choosing time paphé'{li(t), lc(t);

ki(t), kc(t)} such that J is a minimum, where

Ep

J

o

subject to the constraints:

k

k(to) = ko and k(tf) = k

£
yC B leC(kC)
Vi = 1485 (kg)
1, + 1, = 1.0
ko= kgl + k1
kys kis 1gp 1, 20

and plecewise continuous where k is the state variable;'
li’ lc, ki and kc are the control variables and fc(.),
fi(') and L(.) are given strictly concave functions;

to, ps 65 T, ko’ kf and tf are given parameters.

[~ lyg)an + Blr(sy) - k,3° (3.69)

7, - (8+7)k | (3.70)

If one determines 1i by a subunit optimization pro- -

cedure as previously mentioned over subintervals of the

planning horizon [O,tf], then this two-sector problem
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reduces to a slight modification of the problem T-3 con-

sidered in Section B. When 1, is known, b& Equation 3.63,

i

1, is known. Equation 3.67 can then be solved for k; in

terms of k and kc,

Kk 1
k;y =1
1

The preceding control problem then is identical to that

considered in Section B.

te

. . . 2
minimize J = fo —e PIL((1-1,)f (K ))dt + %[k(tfﬁ' kel

subject to,

. (k-k (1-1 ))
_ . c i
k = li i ‘1i - (6+I’)k
k(0) = ko k(tf) = kf

the state variable is k(t) and the control variable is
kc(t). In the absence of a subunit optimizing procedure
to compute 1., deterministic simulation can be performed to
approximate the minimum of J as a function of li’ and the
switching time tl. Approximations to the optimal solution
can thus be made by repeated computation of the control
problem to minimize J with respect to li(t).

Most investments yield their benefits in the form of

identifiable goods that may be marketed or withheld. The
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future benefits from such an investment can be measured by
the output evaluated at the price at which it can all be
sold, less all current production costs. But a wide class
of investments yield benefits which by thelr very act of
production, inure to a wide class of people. These indi-
viduals cannot reasonably be excluded from the benefits and,
thus a price cannot be charged that will effectively dis-
criminate between those who want service and those who do
not. Water purification provides a simple example. Ser-
vices derived from government Ilnvestment may not be charged
for, or, if they are, the rate need not correspond to their
marginal usefulness to society.

The whole purpose of investment policy is to determine
optimal decisions of present and future investment, and the
6ptima1 choices at different times are interrelated. One
should also be concerned that future government sector in-
vestment decisions are similarly optimal.

An extension of the model just treated.is a model
formulated by Uzawa (72). He considered the problem of
optimum fiscal policy in terms of the techniques of optimum
economic growth. The model is an aggregate two-sectof
growth model consisting of a private and a public sector in
which both labor and private capital are used to produce
goods and services. Private goods may be either consumed

or accumulated as capital, while public goods are all
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consumeq.

‘Manj countries have come to regard fiscal policy'boﬁﬁ
as an instrument to achieve short-run goals and to implemgntv
long-run objectives, such as economic grocwth. The Ramsey.
theory (60) and related work (67) are based upon an.economic
structure similar to that of a centrally planned eéonomy in
which a central planning bureau is free to allocate the |
means of production, labor and capital, in whatever manner
-1t desires. In most countries, the allocation of the means
of production is not directly governed by the state author—
ities. Uzawa (72) supposed that the public sector could
determine not only the fiscal policy but also the alloca-
tion of capital and labor between sectors and the division
of private goods between consumption and investment.

The private sector comprises business firms and house-
holds. The output produced in the private sector is as-
sumed to be composed of homogeneous quantities so that any
proportion may be either instantaneously consumed or ac-
cumulated as part of the capital stock. The public sector
provides the private sector with different goods and ser-
vices than those it produces. Public sector goods and ser-
vices are assumed to be measurable and distributed to the
private sector free of cost. Capital accumulations take
place only in the private sector and public goods are not

accumulated. Both production processes employ capital and
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labor and are: subject to all the neoclassical cohditions as
in Equation 3;7 and 3.6. The notation is similar to the
previous'two-sector model, where the subscript i indigates
public sector and c indicatés private sector. Pfoduction
processes are defined as in Equation 3.58. The quantities
of capital and iabor in each sector are as in Equation 3.59.
The output of private goods, Yc(t), is divided betweén con-

sumption, C(t) and investment, Z(t):

C(t) + Z(t) = Yc(t) . _ (3.71)'

The accumulation of the capital is described by
K(t) = z2(t) - sK(t) , ' (3.72)

where § is the rate of depreciation and r is assumed to be

exogenously given:
L(t) = rL(t) . (3.73)

" The utility function of the representative member of
society depends upon the amount of private goods to be con-
sumed and upon the average éuantity of pﬁblic goods avail-
able at each moment. Public goods are assumed to be dis~
tributed equally among the members of the economic unit.
Let L(c(t),yi(t)) be the utility function where c(t) and
yi(t)stand respectively for the quantities of per worker
consumptionvof private and public goods. The objective
functional is represented as the discounted sum of in-

stantaneous utilities through time:



136

2

I = | Lle,y,)e ?tat C (3.7
. o]

whére p is the rate by which future utilities are compared‘
with the present utilities.

Suppose ﬁhat the public sector can deéermine not only
the fiscal policy but also the allocation of capital and
labor between sectors and the division of private goods be-
tween consumption and investment. The public sector then
seeks for the feasible time.paths of factor and output allo-
cation at which 3.74 is maximized. The problem is more
precisely defined as follows: Find a time path of
K_(5), K;(8), Lo(8), L;(8), C(t), Z(t), ¥;(£)} for which

the functional

tr oy ()
7= -]y s Tty e (3.75)

is minimized subject to the constraints:

v (8) < Py(K (8),L5(8))

K (t) + Ki(t) < K(t) ,

K(t) = 2(t) - 8K(t)
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L(t) = Loert

with given initial K(0) = K, and terminal K(t,) = K, where
all variables are nonnegative.

Using thé same notation as in the previous two-%ector
model with the addition of 2 = Z(t)/L(t), per worker invest4
ment in the private sectqr, and omitting the time suffix and
assuming full employment of all factors of production, the
problem is reduced to the following:

i -pt , | 2
-Io L{c,y;)e™ 7dt + Blk(t.) - k]

minimize J
(3.77)

subject to the constraints:

c + z = fc(kc)lC s ' (3.78)

y; = fi(ki)li s

kclc + kili =k ,

k=2 - (r+8)k ,

k(0) = ko and k(tf) = kf

The utility function, L(c,yi) is continuously twice dif-
ferentiable and has positive marginal utilities Lc and Iyi:

for all positive ¢ and vy and 1s strictly concave for all
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the values of c¢ and'yi. Also the following properties hold

for L:
ce < 0, Lyiyi < 0, Lcy, < 0,
2
- L > 0
ec yi¥3 cy3 ’
L L I L
V¥4 €Yy ce yiC€
- < 0, - < 0 .
LC Lc L
Vs Vs

By combining the constraints, this control problem can

be reduced to one with three control variables'{ki,li,c}
and one state variable, k.
tf '
inimi - “Ptae + B(k(t.)- k)2

minimize J = —fo L(c,fi(ki)li)e 5 - kg
subject to:

K = (1;1 P ot e A S SRS

c 1-—1:.L ?
k(0) = ko and k(tf) = ke ,
0 <1,

< 1 .
-

This problem could be computed directly as indicated in
Chapter 2 using the Davidon algorithm together with se-
guential penalty functions to handle both the terminal

constraint on k(t) and the inequality constraint on li(t).
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Another approach to solve thils problem would be to de-
compose it into a simpler problem like T-3. Suppose that a

linear relationship between f, and fc is assumed as

i
lifi(ki) = Vlcfc(kc)

where V 1s a constant. This together with the equation

1; + lc 1.0 allows one to obtain the relationship,

k; = h(l,.k,) -

i
From the equation ky(1-1,) + k,1, = k a function relating

Ko to 1, and k can be determined,

k, = g(1,,k)

Hence the control problem becomés:

2

~pt
[ Ule,k,1)e™Prat
o

i

minimize J

k = 1., (g(1,,k))~ c ~ (r+s)k ,
k(0) = k, and k(tp) =ke ,

0<1 <1

c

Now by choosing lc(t) at values close to its maximum
and minimum or by an independent suboptimization procedure
where lc(t) can be determined, the control problem reduces

fo the problem T-3 of Section B. Various parameter changes
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can be made as was done 1n Sectlion B to determlne how J
changes wlth respect to the constant V and the values for
the lé(t) in the absence of any suboptimization procedure
to choose 1c(t).

 Arrow and Kurz (3) consider'a similar two-sector model
as that of Uzawa (72) just treated. They differ in the
conception of the role of public capital in the economic
system. Uzawa (72) assumes that the output in each of the
private and public sectcrs is determined by the amount of
capital and labor invested in it, while Arrow and Kurz (3)
assume that private output depends upon the amounts of both
kinds of capital as well as of labor (one production func-
tion). A version will be briefly presented as well as how
it can be reduced for computation purposes to a problem
similar to T-3.

The following notation will be used:

Kp(t) = total capital employed in the private sector
at t,

Kg(t) = total capital employed in the public sector-
at t©,

ig(t) = capital per capita employed in the public sec-
tor at ¢,

K(t) = Kp(t) + Kg(t),

é(t) = per capita consumption at ¢,
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L(t) = labor‘supply at t proportional to population
P(t) at t, '

P(t) = total population at t,

Y(t) = output at time t.

The output is determined by
Y(t) = A(t)F(Kp(t),Kg(t),L(t)) s
where F is a concave production function and A(t) allows

for neutral technological changes.

The natural constraint is

K (t) + P(£)o(t) + K_(t)
p g

A(t)F(Kp(t),Kg(t),L(t))
The. control problem can then be formulated as follows:

£
£ _ ¢ - -
minimize J = [ e ° P(£)U(c(t),Kk (£))at
o .

subject to

K(t)

A(t)F(Kp(t),Kg(t),L(t)) - P(t)e(t) ,

K(t)

Kp(t) + Kg(t) >
Ko (t) = P(t)kg(t) >

K(0)

2

KO and K(tf) = Kf

Tt

L(t) L_e

(¢}

where U(é’KF) is a concave function.
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Suppose we now let:

Ky (t) = h(t)K(t) , such that 0 < h(t) <1

where h(t) is a step function defined over [O,tf]. The

probilem can then be formulated as minimize J, where

t

£ " -
5= -f " ePtreeyurace), KL S AOIKE)) 4

o

PC 2
+ EC(s,) - k)

subject to

K(t) = A(E)P(h(t)K(t), 1-h(£)K(t), L(t)) - P(t)c(t)
K(Q) = Ko and K(tf) = Kf
L(t) = LoeTrt

This problem is computed identically to problem T-3
in Section B and can be solved numerically for various

values of h(t) to obtain a relationship between J and h(t).
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IV. GENERALIZATION OF THE COMPUTING FRAMEWORK

A. Generaiization of Two-Sector Growth Models

In order to generaiize the model represented in Chapter
3 as problem T-4, consider the division of the consumption
good sector into three subsectors. The model represented by

Equations 3.45 and 3.46 can be written as:

I(t) = A;ByI(t) , ‘ (4.1)

) ()

il

AlBlI(t) s

C,(t) = A,B,I(t)

]

C4(t) = A3BI()

Q
1

1 Consumption goods produced by modern factories,

Q
i

2 Consumption goods produced by small, family type

factories,

Services.

C3
One may include with Equations 4.1 the following,

Y(t) = I(t) + Cl(t) + CQ(t) + 03(t) s (4.2)
and

i

Ay F A Ry Hag =1 - (4.3)

where Y(t) is the aggregate output and I(t) represents
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investment goods. The proportiop of tdtal investment allo-_
- cated to produce investment goods is };, whileAAl,,Aé,ij
represent the proportion of total investment allocated to
the three subsectors respectively. The values Bi’ Bl’ B2,
and 53 are known numbers derived from the subsector or sec-
tor in question.

I'here are various ways 1ln which this model can now be
linked to a control problem. One way is to simply add the
Equations 4.1 and use the time derivative of 4.2 to obtain

the following differential equation,
¥(t) = (X4B3+A1B3+A5B, +;A3B3)[Y(t)—Cl(t)—Cgkt)-C3(t)]
(4.4)

where Y(0) = Y, and Y(tf) = Y. are known values. One may

form as a performance functional,

e

minimize J =[ [wy(Cq(£)-C¥(£))° + wy(Cy(t)-CE(£))?
0
* wg(Ca(8)-C3(t))Jat (4.5)

where Cl*(t), Cz*(t), 03*(t) are desired levels of consump-

tior available in each subsector and
¥ = O% + % ¥
C¥(t) Cl(t) Cz(t) + 03(t)
is the desired total consumption available. The Wj are

known weights assigned to the deviations from the desired

paths. The Equations 4.3, 4.4, 4.5 and the boundary
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conditions form the control problem formulation. The prob-
Lem has one state variable Y(L) and the seven control var-
lables, Ai(t), Al(t), xz(t), A3(t), Cl(t), Cz(t), 03(t).
One of the Aj can be eliminated by Equation 4.3.

A more operational formulation would be in the follow-
ing modification. Consider the two-sector model in the for-
mat of problem T-4 as discussed in Section C of Chapter 3.
In that model, C = Cl + 02 + C3 and Equation 4,1 collapses
into the two-sector version. From the two-sector problem
select the optimal A*i on the basis of minimizing the per-
formance functional, Equation 3.53, within the given plan-
ning horizon. Alsoc from the solution one obtains I(t),

Y(t) and C(t) at discrete time points over [0,t The

f]'
éllocation ratios between subsectors could then be chosen .
to secure balance with marginal proportions of consumption
demand. For example, if @35 Gp, O3 denote the marginal
propensities to consume of the three types of consumption
goods and xq + ap + A3 = 1 -_A*i is the condition of full
utilization of investmeht, the balancing values of_)\j can
be specified as:

3 .
by e/ CE e, 12,3 (4.6)

With the Xj values thus selected, and the I(t) func-
tion known at a discrete set of time points on the basis of

optimizing withih the related two—sectof problem, the values .



146

of Cj(t) can be computed from Equations 4.1. One may either '
specify Cj(t) at the initial time, t  or the final time, tg.
If the former is used and the Equations 4.1 involving'cj(t)
may be discretized and using the known values of I(t) com-
puted forward in time. While if the latter is used then the
procedure is to discretize and move backward from tf to to
in time. This same procedure could be utilized for more
than three subsectors, always using the optimal results
from the related two-sector problem.

Consider now an intersectorial generalization of the
modified Goodwin model represented in Section B of Chapter
3 as control problem T-2. One may assume an n-sector inter-
dependent mbdel of the dynamic Leontief type input-output
scheme. Also let us assume time dependent sectorial co-
efficients as in problem T-4.

Denote the n component column-vector of real consump-
tion, real national income and net investment by C, Y and
I, respectively, and define the intersectoral capital—output'
time-dependent coefficient by B(t), where B_l(t) exists for

all tel0,tp].
I= B(t)é where B(t) = (bij(t)) (4.7)
i=1,...510
J=1l,...,n

The following equations define the»genéralized model
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in terms of the consumption and income vectors.

C=Y-I=Y~-BY (4.8)
n n 2'
U= 1 u; = & wy (e —c*i) . (4.9).
i=1 i=1 :
where the performance functional is given as
tr n , 5
minimize J = | r wy(e;-c¥,)%at (4.10)
o 1i=l1 + +

i
path in the ith sector is given by c*.(t). Let the boundary

and the w, are given weights. The desired consumption time

conditions be given as:

and Y(tf) = Yo . (4.11)

Y(0) = Yo s

Equations 4.8, 4.10, and 4.11 form the control problem.

One first notes that if the time—dependent intersec-
torial investment matrix B(t) is strictly diagonal, then the
above intersectorial model decomposes into n independent
control problems each of which is identical to problem T-2
except for a time varying capital-output function. The
computation in this}cése is simply repeated solution of a
problem like T-2 with terminal constraints on the final

sectorial output. The problem for the ith sector is:

t
r

PR - ¥ -
minimize J, fo w, (cy—c*.)%dt + %(yi(tf) Yfi) .

(uﬂlz)
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subject to,

. L |
ys = (Y°"c ) 3 ()4-13)
17 by, (B) i ,
7100 = ¥o yy(tg) = i, . (4.14)

The economic meaning of this is thaf if the different
sectors are relatively independent in the sense that the
marginal capital requirements for increasing output in any
sector are obtainéd either entirely through that sector
itself or from outside the n sector sysfem by a central
planning authority, then for each sector an optimal set of
time paths for yi and c:,L can be determihed.

This assumption of independence may be viewed as a
specific type of disaggregating the economy. The question n
of whether this is empirically realistic or sﬁatistically
estimable is a separate issue. However from the compu~
tational point of view this assumption of independence
allows for a simple means of computing the optimal tra-
jectories for each sector.

In the case whére B(t) is not strictly diagonal the
problem becomes one of n state variables Yis+++59p and n
control variables Cyss-+sCp
state variables.

Computationally this problem is a generalization of

problem T-2. It requires n penalty constants and n control

with terminal constraints on the -
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variables with no ineéuality constraints. This type of
problem can be solved by the Davidon and conjugate gradiént
methods but computational~difficulties increase with the
number of penalty constants used and the humber of control
variables. The procedure for solution is as discussed in
Chapter 2.

However from my computational experience the iterative
techniques of Chapter 2 have limitations for a problem with
a large number of control variables and where many penalfy' )
constants are used;

An approach to numerically solve the optimal control
problem with linear inequality constraints and a large num-
ber of confrol variables that appears to be more operational
than applying the Davidon or conjugate gradient methods with
penalty functions is extensions of the discrete model de-
veloped by Bruno (9). One may generalize from the two-
sector model treated in Section E of Chapter 2 td any num-
ber of activities for consumption goods and investment goods
and still only one homogeneous capital good. Also treatment
of the case of any number of depreciable capital goods will
be considered. In both cases the technology matrix A(t) |
may be a known time varying matrix function.

Consider the model of one activity to produce consump~
tion goods and two activities to prbduce a depreciable cap-

ital good. The notation used will be identical to that
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used in Section E of Chapter 2 with the addition of Zq >
Zos which represent investment'per worker in activity one
and two respectively. In per worker terms the problem can
be formulated as'foilows:

t .
- f
maximize J = | c(t)e Plat (4.15)
0

subject to,
ayq (B)e(t) + ay,(8)z (6) + aj3(t)zy(t) + e (8) = 1
(4.16)

azl(t)C(t) + a22(t)zi(t) + a23(t)22(t) + e(t) = k(t)

k(%)

S(rH)k(E) + 2y (t) + z,(t) (4.17)

k(0) k and k(tf) = k

(6] b

where A(t) is a known matrix function, c(t) 1Is per worker
consumption and k(t) is per worker stock of capital.

This problem, by using the maximum principle as was
done in Section E, Chapter 2, reduces to finding the solu-

tion of the linear programming problem,

maximize Hy = c(t) +'n(t)(z1(t) + z5(t)) (4.18)

subject to the constraints 4.16 at each discrete time point.

The duval is

minimize Dl = w(t) + s(t)k(t) (4.19)
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subject to,

aq1 (6)w(t) + ay (£)s(t) - p_(t) =1 (4.20)
a-lz(tl)w(t) + ay,(8)s(t) ~ py(£) = «(t)
aq3(£)wlt) + apy(6)s(t) - py(t) = (&)

where w(t), s(t) represent the real wage and rental price
of capital all measured in consumption units. From linear

programming theory one has,
Z1Dy = ZgoPy = €Dy = weq =se =0 . (4.21)

The dynamic equations that link together the wvarious

discrete time points are,

kK = <(r+8)k + z. + Z, (4.22)

1

k(0) = ko and k(tf) = kf

and
% = (p+é+p)m ~ 5 . ’ (4}23)

As in Section E of Chapter 2 p is the time rate of dis-
count, r is the exogenously giyen growth rate of labor and
§ is the deppeciation rate of capital.

The neighboring extremal method as considered in Sec-
tion E of Chapter 2 can be implemented to solve this problem
and extensions of 1t to & activities for consumption goods

and m activities for investment goods. One estimates w(0)
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and with the given value k(0) this allows one to solve the
linear program given by Equations 4.18 and 4.16 at time
point t =0 and its dual Equations 4.19 andl4.20. This re-
sults in computed values for ¢(0), zl(O), 22(0), s(0),
w(0), py(0), p,y(0), p (0), e (0) and e(0). Then using the
differential Equations 4.22 and 4.23, k(tl) and "(tl) are
coﬁputed where tl is the first discrete time point.

The process of computiﬁg the linear program and its
dual are thus continued at each discrete time point using
the differential equations to link together the time point
values of k(t) and n(t) until k(tf) is determined. If
k(tf) does not approximate k. then a new value for 7(0)
is considered and the procedure is repeated until k(tf)
approximates kp. The value k(tf) is dependent upon «(0)
and an interpolating procedure can be used to improve the
choice of #(0) after each iteration.

The preceding model could easily have been generalized
to include & activities producing consumption goods and m
activities to produce homogeneous investment goods. The
computational procedure would be identical to that already
considered.

Consider now the general n—sector model with heter-
ogeneous capital goods. An economy prcduces n+l goods, a
consumption good c, and n depreciable goods Ii with

exponential depreciation rates si(i=l,2,...,n). Assume
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labor, as before, to be growing at an exogenously'fixed

rate r. The notation will be the same except that sub-

scripts will be added to the variables'involving'the capi-

tal goods (z, k, A, €, 5, T, D).

The problem now becomes:

te

maximize J = | c(t)e—ptdt (h.21)

(o}

subject to the ntl constraints,

n
a (t)e(t) + iil 2, (t)z,(8) + e (£) = k(%)

r=0,1,...,n (4.25)

where ko=l and all variables ¢, 25 and kr are understood to

be nonnegative. There exists a differential equation for

each capital good.

1

and ki(tf) = k; s (i=1,...,n)

k.(0) = k
L o f

i

The Hamiltonian is formed as,

g =c " le(s) +
1

[

R ICH O I TR N O

k, = —(r+Gi)ki +tz . (4.26)

(4.28)

where the adjoint variable is w(t)e-pt.

One may rewrite the function to be maximized as L;
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where L is defined as follows,

L pt

He +

i

NS

EACENCICNE

e(t) +
i

3

) ni(t)zi(t) N _ (4-29)

The summation term on the left 1s a constant at each dis-
oféte time point and is known initially and generated sub-
sequently by the system differential Equations 4.26 and

4.27 and the following adjoint differential equations

1, () = (p+s,+0)m (b) - si(t)' . i=1,....n . (4.30)

Hence maximizing L also maximizes H.

The primal linear program necessary to solve the con-
trol problem is then the objective function U4.29 and the
constraints are Equations 4.25. The dual linear program
system becomes,

n
D = w(t) + =
4 .

s.(t)k. (%) (4.31)
1 1 =

subject to the constraints,

z
w(t)aO + z

Lt sp(tla, - py(t) = ﬂi(t) s

1 i

i=l,...,n . (4.32)
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aw(t) + ar(t)sr(t) -p, =1 . (4.33)
r=1

The variables w(t), s,.(t), (r=1,...,n) are the wage

. réte and the rental price of the types of capital méasured
in consumption units. This model has n sectors and absingle
technique for pfoducing the consumption good. |

The values ki(O) are given and one then approximates
m;(0) (i=1l,...,n). With this information the primal linear
program whose objective function is given by Equation 4.29
and constraints by Equations 4.25 and the dual 4.31, 4.32,
and 4.33 are solved. Using the differential Equations
4.26 and 4.30 together with the boundary conditions 4.27,
ni(t) and ki(t) are stepped up in time and the process is
repeated until ki(tf) (i=1,...,n) are computed. These
values are compared to kif and if all the values are not
within a given tolerance of ki(tf), then the "1(0)
(i=1l,...,n) are rechosen and the computation repeated until
the boundary conditions are approximately satisfied.

One notes that this numerical procedure to solve the
previously mentioned control problem does not require a
constant technology matrix, but allows for a time varying
matrix function. The computational brocedure requires a
process of altering the initial values of ni(o) until the

boundary conditions ky(tp) = k; are satisfied.
b
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B. Simulation of Optimal Trajectories

Another approach. by whilch one may numerically solve and:
study optimal economle growth problems relates to simula-
tion,-both stoohaSuic and deterministic. The obJective of
.the.simulated optimiZation approach is to develop efficient,
economical techniques for looating improved but not nec-
essarily optimum solutions to models where other ootimiza-
tion techniques cannot be realistically applied or are too,
'costly to utilize. | |

A great deal of literature on'control.theory,'feedback.
and sensitivity analysis is relevant to this problem, for
example Fox, Sengupta and Thorbecke (27), Sen (63), Hestenes .
(32), Theil (69), Naylor, Wertz and Wonnacott (55), Navlor-
et al. (54), Fromm (28), and Fromm and Taubman (29). Fromm
and Taubman'(29) have applied the technique of simulation
via repeated solution of an economic model to compute the
utllity of alternative policy actions for evaluating the
.relative desirability of a'set of monetary and fisoal policy'
actions. Naylor, Wertz and Wonnacott (55) used stochastic
simulation to coﬁpare the stability of various policy actions
by statistical techniques. | |
| At least four general alternatives are avallable to
veconomic policy makers for evaluating the effectiveness of
their decisions involving_economic policies. First it may

be possible to perform controlled experiments with the given a
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economic system, where the system may be a firm, an in-
dustry, or the economy of a country. Usually institutlonal,
political and othef practical constraints make this al=-
ternative impossible in the case of an industry or the
economy as a whole,. and difficult in the case of a firm.
Even where actual experiments may be carried out it ié un-
likely that the relevant varlables can be held constant to
obtain meaningful comparisons of policy alternatives.

Second, one may use an objective functional as was
done in the earlier work to determine an index of perform-
ance on the economic system. Optimizing the functional
subject to the equations describing the system gives a meas-‘
ure of effectiveness of the optimal policy with respect to
the index chosen. Parameter variations can then be made
usiﬁg fhe functional value as an indicator of sensitivity
measure as was previously done.

Third, if cross-section data are available over time,
it may be possible to perform a type of ex post experiment
with an economic system.

Fourth, when controlled experimentation is impossible
or impractical and cross-section data is unavailable, then
the policy maker may use the following alternative. He may
formulate and estimate the parameters of the model of the
given system relating the endogenous variables of the system

to the exogenous variables and policy instruments or controls.
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If the model consists.of a large number.of'simultaneous,
nonlinear differéntial or difference equations possibly
with stochastic srror terms included then analytical tech-
niques exist in theory only. When this is the case one
must resort to numerical analysis techniques which were-
treated earlier and/or simulation to evaluate alternative
economic policies.

Simulation may be defined as a numerical procedure for
conducting experiments on a digital computer with certain
types of mathematical models describing the behavior of an
economic system over extended periods of time (54). The
simulation may either be stochastic in which random variables
are involved or deterministic where parameter modifications
are considered. For example in the optimal economic growth
problem deterministic simulation may‘involve experimentation
with various feedback relationships or possible ways of
simplifying a complex model as was done in Section C of
Chapter 3. Stochastic simulation allows for stochastic
error terms to be included in possible feedback relation-
ships or in production processes. The principle difference
between a simulation experiment and a "real world" experi~
ment 1is that with simulation the experimentation is con~
ducted with a model of the economic system rather than the
actual economic system itseif.b

A question of interest is how does the optimal solution
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computed from a growth model with a performance functional
based on utility of consumption compare with the consumption
- path computed from various runs of a simulated system based
on some sort of feedback relation éither détérministic or
stochastic. Comparisons may be considered either on magni-
tude of consumption, C(t), or its variability, or of the
computed utility of the consumption. Experimentation based
on the compﬁted optimal paths from problem T-3 will be com-
.pared with various simulated results. One wishes to find the
combination of parameter values or factor levels at which the
response variable is maximized to optimize some process, in
this case the objective functional.

For the first experimentation, consider the discretized
version of problem T-3, where the parameters are as defined

in Section B, Chapter 3. The objective function becomes

T-1

maximize J = ijl (11p)1 1£n (ci)l-n _%2 [K(T) - KT]2
: c i-n
+ o oo™ T T 3k
subject to the difference eguations,
Kigp = ¥3 — C5 (1"5)Ki- , (4.35)

Y, = (1+g)iaKiB (4.36)

where KO and KT are given values and g = r(1-B) + z and
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pc is a pdsitive penalty constant.

An example of the use of déterministic simulation will
be treated for the problem T-3 with respéct to a féedback
relétionship. The parameter values for the model are given
as follows:

B= .6, n= .9, § = .05, Kp = 24,0 (a 5% rate Of.growth

on output Yi)’ time horizon [0,10], rate of labor

growth, r .025, neutral rate of technical change,
z = .01 and penalty constant, pc = 3.0.

A feedback relationship of the form

Cy = g(Yi,Yi_l,...,Yi_J) (b4.37)

is consldered, where C1 1s consumption at the ith period.
and Yi is the output of the economic system at the 1ith
period. The first case treated will be linear with no

intercept term of the form

Ci (!lYi (0 < al < l) (4-38)

Cy = o7¥5 4

One notes that Equation 4.37 and 4.38 are exact re~
lationships and have no stochastic error terms. The param-
eter @y 1s then allowed to assume various values and for
each value the relationship 4.38 is substituted into the

difference equation system 4.35 and 4.36. Thus Kys Cy5 Yy

for i=0,1,2,...,T can be computed.
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From the computed values the objective function U4.34,
the utility of alternative policy actions, 1s determined for
each modified value of “l; Results for the discretized T-3
problem follow in Table L.1. '

A regression of the optimal time path data computed in
Section B of Chapter 3 gives the relationship betweeﬁ Ci and
Y, as C; = L67h Y, with a multiple determination coefficient,
R2, of .78. It is interesting to note that the simulated
value of ay = .670 yields the objective function J extremely
close to the optimal computed functional value of J = 98.18.

For the values of ay greater than .70 the computed value of

Table 4.1. Objective function values for different choices
of the feedback constant o, (deterministic

simulation)

Ci = g%y C;j = %1¥3.4

J ¢y J ay
91.14 .62 83.17 .63
96.66 .64 91.76 .65
98.04 67 96.65 .67
96.09 .68 98.03 .69
90.56 .70 96.05 .71
81.90 .72 | 90.87 .73

70.39 el 82.67 .75
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¥(t) is much below the target value Y. For the model T-3
the neutral technological growth paraméter would have to be
greater than this run value of z = .01 to allow a coeffi-
cient value (marginal propensity to consume) greater than
@) = .66 to be an optimal value.

For the lagged relationship Ci = “lYi—l a least square
fit of the optimal time path data computed in Section B of

Chapter 3 gives the relationship Cy = .694 Y, _, for the ten

-1
year horizon. The multiple determination coefficient is
.80 and the residual variance equals .26. Again the feed—
back simulation value of the parameter a; = .69 gives an
extremely close simulated value to the feedback coefficient
obtained by the regression of Ci on Yi from the optimal time
path data computed from the control theory algorithms.

A reason for inéluding a stochastic disturbance term
in the model is that one may replicate the simulation ex-
periment for given stochastic parameter specifications and
then construct confidence intervals and make probabilistic
inferences about the differences in the effects of alterna-
tive parameter choices. Without the inclusion of these dis-
turbance terms, one can say little about the statistical
precision of the inferences made about the effectiveness of
parameter choices on the basis of simulation experiments.
Also wars, foreign competition, labor strikes, and national

disasters are factors which might affect national income and
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consumption but which may not be subject to prediction and
control by the policy makers. |

Factorial experimental designs and multiple cbmparison
techniques are relevant to analyzing simulation déta (62).
For example two parameters of interest may be considered at
five levels each. If one requires a complete investigation,
including main effects and interaction of all orders this
requires 25 cells. Replication within each cell can be
made a given number of times. Less than a complete investi-
gation will require less cells and thus less computer time
and simulated data. One then searches for the factor levels
at which the objective function is maximized.

The control problem feedback simulation experiments oﬁ
problem T-3 which were conducted consisted of four runs,
one for each parameter specification. In each run the
economy was simulated for a period equal to ten time units,
and then J was computed. The simulation was replicated ten
times using the given relationship of the feedback function
together with a stochastic disturbance term. The feedback

function used was Ci = alYi + u; where u. are normally and

i
independently distributed with mean 0 and variance equal
.28. The results are summarized in Tables 4.2 and 4.3. The
pseudorandom numbers generated were independently computed

for each run and for each parameter modification.

From the data in Table 4.3 the F value is computéd as
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Table 4.2. The dbjective function value, J, for different
feedback parameter values with a stochastic
-------- error term in the feedback relationship --

uyN.I.D. (0,.28)

171 i

a; = 63 oy = .67 ay = .72 o = .76
96.46 97.68 87.08 61.22
95.99 95.41 84.20 22.09
93.90 93.62 82.23 88.45
61.52 93.90 97.62 68.71
85.33 87.18 36.43 34.49
68.77 81.98 87.82 52.28
77 .45 85.86 67.76 56.22
62.10 91.16 74,84 65.95
64,65 96.89 83.13 45,83
70.30 92.28 88.30 51.28

-— em em ms e A Em o e Gm mm e mm  mm e ew s s e e e P e e mm me ke g A e

Table 4.3. Statistics for one-way analysis of variance

Source of Sum of d.f. Mean Square
Variation Squares

Between 7098.82 3 2366.27
Error 7727.8 36 21L4.66
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F = 11.023. The null hypothesis, Ho’ i1s that the popula-
tion means for the objective function values for the dif-
ferent parameter values are all equal. By employing the F
statistic, the decision rule for accepting or rejecting Ho

becomes:

if F > Fa (3, 36), then reject Ho’
otherwise accept Ho’ where o is the significance level.

The value of F . (3, 36) is 3.28 and for F ,; (3, 36) is
4,40, hence the data generated by the simulated experiment
do not support the null hypothesis. Rejection of the null
hypothesis is made at both the .05 and .01 significance
level.

Having rejected the hypothesis that the objective func-
tion value associated with each of the four feedback rela-
tions is the same, one may now consider multiple comparisons'
between the feedback relationships.

Tukey's method (62) will yield simultaneous confidence
intervals for the differences between all pairs of means.
With a 95% probability, all of the following confidence
intervals are true.

Let Jij be the functional value of the ith replication
of the jth parameter modification and 33 be the mean of the

jth modifieation.
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- - Mse
(EJ; - BI) = (T3 - T) + q V¢

j.e=l,...,4 j#e

where qk,p is tabulated under the title."Diétribution‘of.the
Studentized Range" and
k = the number of sample means,
p = the number of degrees of freedom associated with
the error mean square.
For the previous data generated by the single factor
computer simulation experiment the formula for 95% confi-

dence intervals is given by,

|
~~
[

1
S|
N
+

/ 214 .66
(EJ; - EJ,) ~10.0

J e’ - q4,36

+ (3.81)/ 2186

il
~
&

1
&

o
~
+

1}
—
Pl

i
oy
~r
+

+ 17.65 .

Table 4.4 contains a difference between sample means
for all six pairs of difference in the experiment. An
asterisk (¥) indicates that the particular difference ex-
ceeds the confidence allowance, 17.65.

Similar results are given fof the feedback relationship
C; = @ Y5 1 tuy.

The null hypothesis is likewise rejected for this case.
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Table 4.4. Difference of sample means for C; = oYy + uy

% Ne 2 3 4

.63 1 -13.94 ~1.29 23.00%
.67 2 12.65 '36.94%
.72 3 24 .20%
.76 4

Table 4.5. Difference of sample means for Cqy = oq¥y 4 t Uy

ay Ne 2 3 4 5
.63 1 -22.99% -26.88%  -25.67% ~4.43
.67 2 -3.89 - -2.68 18.56 -
.69 3 1.21 22.45%
.71 4 21.24%
.15 5

Table 4.5 summarizes the results for all pairs of sample

means, where the confidence interval is given by

- - 262.
Ty - To) + ag e/ 252

If the difference exceeds 20.58 it is significant at
the .05 level and is indicated by the asterisk.
For the short time horizons of ten years in the non-

linear problem T-3 the linear feedback relation was adequate
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to give results that agreed with the data computed from the
control problem algorithms.

For a second feedback simulation experiment consider
the T-3 problem with the following parameters. Choose B =
.25 and set the rate of technical progress z equal to .03 -
to compute a model with parameter specifications approximat-
ing those of a developed economy. Let the time horizon be
[0,50] and the other values are as given n ; .9, § = .05,

r = .025, and the penalty constant pc = .1. The final stock

of capital is chosen as K, = 250. The results of determin-

T
istic simulation are summarized in Table 4.6.

Table 4.6. Objective function values for different choices
of the feedback relation C; = oYy for time
horizon [0,50] with B = .2%, Kp = 250., z = .03,
~pc = .1 and a = 2.1723

J o

1

96.0 .63

223.2 .65
299.4 .67
327.5 .69
310.0 .71
250.2 .73

150.8 .75
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A regression of the optimal déta computed from the con-
trol algorithm results in Ci = .65 Yi with a éoefficient of
multiple determination of .91. The simulated optimizatioﬁ
indicates the optimizing a; value as a; = .69.

This value 1s close to the feedback value obtained by
running the regression of Ci against Yi from the time path
data computed from the control algorithms. The stochastic
simulation for the 50 year horizon and feedback relationship
Ci = a1Y5; + uy where u; are normally~independent and identi-
cally distributed with mean 0. and variance 1.0 follow in
Table 4.7.

The differences between sample means are summarized in
Table 4.8 where the asterisk indicates that the difference
is significant at the .05 level (greater than 23.73).

Other feedback relationships could be considered as
well as other parameter variations to solve the control
problem by simulation, but these cases illustrate the
feasibility of this alternative way of approximating the
optimal solution to the control problem by simulation

techniques.
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Table 4.7. Average values of the objective function for
different aq values where Ci = ulYi + uy

ui * N.I.D.7(0,1.0)
Simulation _

run J %
1 108.76 - .63
2 292.31 .67
3 325.36 .69
h 309.42 Tl
5 140.88 .75

Table 4.8. Difference in sample means

2 3 y 5
-183.55% -216.6% -200.6% -32.0%
-33.0 ~17.11 151.5%

15.94 184.5% |

=W n

168.5%
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V. SUMMARY AND FURTHER RESEARCH

Four types of computation applied to optimal economic
growth models have been considered and studied. The first
was applying conjugate direction control algorithmsvto
numerically solvé deterministic optimal economic growth
problems. The two iterative methods treated were the con-
jugate gradient and the Davidon algorithms and in both
cases penalty functions were used to handle the terminal
constraints on the state variables. In every case considered
" the Davidon method converged invless iterations and was less
sénsitive to the search direction parameter than the conju-
gate gradient method. The penalty function approach proved
adequate to handle the terminal state constraints in all the
problems that were studied. However a certain amount of nu-
merical experimentation was needed to select the right mag-
nitude for the penalty constants.

Experience with each problem was needed to determine
the correct choices. Sequential unconstrainted minimization
techniques of varying the penalty constants was helpful yet
experimentation was still necessary to achieve good selec-
tions of the constants for each subprobiem. Disadvantages
of the conjugate direction iterative methods hay be noted to
include the difficulties encountered in treating inequality

constraints. This requires penalty constants for the
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inequalities and for the fterminal constraints. Success of
the method is thus greatly dependent upon Jjudicious choices
of the penalty constants and requires a great deal of com-
puter time and patience on the user's part to select ade-
quate penalty constants.

However for nonlinear aggregative optimal growth models
of from one to four state variables and one or possibly two
control variables with no inequality and only termihal
state constraints, the iterative conjugate direction al-
gorithms appear from the computational experience reported
earlier to be a reasonable choice to solve such nonlinear
problems.

For operational planning type models with a large num-
ber of linear inequality constraints the second type of
computational approach considered, the linear programming
" primal-dual problem with the neighboring extremal approach
of Section A of Chapter 4 would be an attractive alternative
to the iterative conjugate direction methods. A problem of
further study would be to generalize the linear programming
approach to a nonlinear objective functional.

The third computational approach considered in Section
C of Chapter 3 was reducing.a complex model to a less com-
plex one by Choosing some of the decision variables via a
suboptimization procedure. This reduced the size of the

problem anc¢ allowed for repeated solution of the complete
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model and the submodel by control theory iﬁerative algo=
rithms. This approach also allowed deterministic simula-
tion on certain decision variables to approximate the
optimal solutions.

The objective of the fourth computational approach,
simulated optimization, is to locate improvéd but not nec-
essarily optimum solutions. Thils technique is highly at-
tréctive compared to fhe computational difficulties involved
in using iterative conjugate algorithms for large problems.
The simulation can be utilized as described in Section C of
Chapter 3 or as reported in Section B of Chapter 4. The
latter approach proved successful in my experience reported
in Chapter 4 Section B of assuming feedback relationships
and optimizing on the parameters involved in the feedbéck .
relationship. The data generated can then be analyzed by
a factorial experimental design and a comparisqn of cell
means for the different choices of the parameters can then
be made if the differences are significant. In addition,
complex optimal economic growth models can also be reduced
to simpler ones by assuming relationships between the system
dynamics and/or state and control variables. The simple
models can then be solved by iterative copjugate difection
techniques for given functional relationships as were
described in Section C of Chapter 3. |

If the functional relationships to simplify the model
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are assumed stochastic, then various computed replications
can be made where each modification is considered aé avfac-
tor level in a factorial design. Significant differences
and comparisons can then be made to approximate the optimal
choice of the functional relationships. If deterministic
relationships are assumed then deterministic simulationbis
effected. The advantage of this approach is that large
optimal economic growth model solutions can be approximated
by reducing the problem to a simpler one that can be solved
by the iterative conjugate direction algorithms ireported
here. The solutions are computed for the various functional
relationships and the statistical analysis performed. This
"eliminates the computational difficulties of a large control
problem yet may increase the computer time (since each run
is replicated) and sacrifices opfimality for only an improved
solution. |
The feedback technique with a discretized model as re-
ported in Section B of Chapter U4 is especially easy to com-
pute. It requires no iterative control algorithms and uses
only feedback relationships between the state and control
variables. As all other simulated optimization approaches
it only approximates the optimal solution. However, the
simulation using feedback relationships allows fbr the.éasy
incorporation of stochastic relationships in the model.

This allows for more realism since the nature of many
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economic models would tend to be stochastic to allow for
unpredictable factors rather than deterministic.

The feedback technique as présented in Section B Qf
Chapter 4 éertainly is an attractive procedure to solve
eilther a deterministic or stochastic control problem if
some idea of the state-control functional relationships
are known.

Three areas for further research would include investi-
gation into improved methods to handle inequality constraints
in the control problem, continued investigation into the
computation of stochastic control models as applied to
economic growth, and investigation into the introduction
of a nonlinear objective functional in the primal-dual
linear programming approach of Section A, Chapter 4.

It is my plan to continue research activity dealing

in these and related optimization areas.
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VIII. APPENDIX A

A computer code for solving problem T-3 by'the
Davidon algorithm and penalty functions to treat

terminal state constraints.



IMPLICIT REAL*8(A-H,0-2)

COMMON F,OPTSTP,PC,PSIGSQ,DFA,T,TI,X(10),D(10),STOX1(101),STOX2(1
101),5T0U(101),6(101),S5(101),66(101),Y(101},IN,IEND,ITAB,1X,NFEVAL,
2NREINT 4NV, ROUN e

CUMMON/MF/ PLLyP22yP13yPL4yPL54PL64PLTyP28,4PZ1C

P21=0C.S

PZ2=0Q.¢€
PZ3=L.03
PZ4=C.C5
PZ5=0,Cl1
PL6=Ce 325
PZT7=PZe*(1,D0-PZ2)+P1Z5
PZ8=C, 8419
PZ1G=1.D0/(1.D0-PZ1}
IEND 12¢
ITAB IeND + 1
KAOQUN = 4
PC=3.DC
[MAX = 14
Tl =.1DC
Nv= 1
ISTEP = 9
IX = 1
NFEVAL
NREINT
STOX1(1) 150G
STOL(1)=2.25D0
T2Z = 11
DD 1C I = 2,101
STOU(I )=242500+435D0U%T22Z
T¢Z = 122 + TI

16 S{I) = C.DC

¢
C
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CALL FANDG(0.DO)

GSQ = SP(GyGy2)

WRITE (69100) (1,STUX1{I) G{I)y I= 14101+4)
10G FORMAT (110,2D20.8)
STPEST = .1DO/DSQRT{(GSQ)
CONTINUE
DO 2 I=1,ITAB

o

2 S{I) = =G(I)
DFA =-GSQ
5 CONTINUE

DO 19 [=1,1TAB
19 GGAI) =_G(IL) . ——-
CALL LINMIN(STPEST)
ISTEP = ISTEP + |}
IX = IX ¢+ 1
D0 3 I=1,.IYAB. ___ _ _____ e e el e

3 STUU(I, = STOQU(I) + GPTSTP*S(I,
WRITE (6911) ISTEP NFEVAL oNREINT F GS5QsPSLof1aSTOX1(I),STOX2(1),

1 STOUCT) 4G(I) s1=14101,4)
WRITE (6,17). QPISTP _ . .

17 FORMAT (/77 D1S5.7/77/7/7/7)
IF{ISTEP.EQe4) GU TO 50Q. e
IF(ISTEP.,EQ«8) GC TO 50

. IF (. GSQ_elEs 1sU=04) GC TOC 30 et e e e
IF(ISTEP.EQ«IMAX) GO TO 30 .

3 STPEST = 4.00%0PTSTP . .
IF(STPEST.GTo1.DC) STPEST = '1.00

- CALL SEAR
IF (IX.EQ.l) GO TO 21
DFA= SP(GsSyl) S
IF (CFA.GT.0.0G) GO TC 6

. G60_TO 5

& WRITE (6412)
IX =l
STPEST = O0PTSTP/10.D0
GU TGO 1

L8T



21

30

4C

OPTSTP/10.D0

STPEST
GO_T4. 1
WRITE(€940)
FORMAT(1X,*' TIME _ __ __QUTPUT _ . _ SAVINGS')_ .. . -

4l

35

_...50

51

55

6C

T=C.D0

DO 35 1I=1+1TAB,4 .

Yi= DEXP(PZ7*T)*PZS*(STCXI(I,)**PZZ
Sl=(Y1-STCU(I))/YL

WRITE(6s41) TeYl,S1

FORMAT(1H 3F12.€) .. . . . _ .. ..  _. .
T =T + 4,00*TI

MWRITE(E451) . .- .

FORMAT(1X,! TIME 420X '"HAMILTONIAN')
_T¥1=0.D00 ______. e e e

DO 60 I= 1|ITABQIC

. Hl= =DEXP(-PZ3*TY]1)*PZ1Q%*(STOQULI))**(1.DC-PZ1) . . . -
H2= STOX2(1)*(PZB8*DEXP(PZT*TYL)*(STOXL(I ))*%PZ2-STOU(1)-PZ4*STOXL (

D ¥ 3 O

H=Hl4H2
WRITE(&+55) TY1:H _ o

FORMAT (1X4F12 6,036.10)

TYi=TY1+10.0C%*T] _ . e e

AF_{ISTEP +EGQ. IMAX )} STCP.

11.
. 2023,6/1HQ 932X SHINDEX s 13X92HX) 9 18X 42HX29 19X 1HUs 19X LHG// (1H ¢136, .

12

GO TC 18
FORMAT (///1HO98HSTEP4NOs 95X y20HFUNCTICON EVALUATIONS »5Xy L6HREINTER
LPOLATIONS ¢ 20X 9 LHF 120X 93HGSQ 920X ¢3HPSI/ 1HO 91591189123 9D36.109D2G.6,

33X44D20.8))

FORMAT ('OUPHILL OIRECTION GF SEARCH--A STEEPEST DESCENT STEP WILL
1FOLLCW?®)

END
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SUBROUTINE FANDG(TSTEP)
IMPLICIT REAL*8({A=H,C-2)

COMMON F,OPTSTPoPCePSI +GSQeDFAsTeT 1o X(10).0(10).srox1(101).srox2(1‘
IOII.STOU(101).G(lOl).S(lOl).GG(lUl):Y(lOlloIN.ItND.ITAB,IX NFEVAL, |
2NREINT ¢NV 9 KOUN ,

COMMON/MF / PZl.PZZ.PZB.PZéoPZS.PZb.PZ? P28,PZ10 :

DIMENSION 2(101)

SAVE THE STORED CGNTROL _TABLE BY TRANSFERRING_ITS CONTENTS T0 Z

o oo

TABLE Z IS USED AS THE CONTROL IN THIS SUBROUTINE

DO 1 I=1,ITAB
1 Z(I) = STOU(I) + TSTEP*S(I1)

__ INTEGRATE THE STATE SYSTEM

T = <000
X(1) = 15.D0
I=1

IN= )

2 IF(INeEQe4 +OR. INsEQ.13) GO TO 3
IF(INGEQe3) U=(Z(I)+ Z(I+1))/2.D0
CIF{INeEGQeS) U= Z(I+1)
IF(INCEGCel) U= 2(1)
3 X1 =x(1)
D(1)=(PZB*DEXP (PZT*T)% (XL ) ¥%PZ2=U=PZ4%*X1 )
4 CALL STEP(62)

I=1+1
- STOX1(IL) = X{(1)
IF(I .LT. [TAB) GO TO 4
PSI =_X(1) = 29.16D0
PCPSI =(PC)*PSI
. F=(PZ10O¥%(Z(1)*%(1.0C~PZ1)))/2,00 . .

68T



F=~F
TR = 0.0
DO 40 I=2,1END
. TR = TR + TI
4C F=F-(DEXP(=-PZ3%TR))*PZ10%(2(1)**(1.D0~PZ1))
__TR=TR+TI e

e oo

F=F-(DEXP(-PZ3*TR)*PZ10%(Z(ITAB)*%(1.DC-PZ1)))/2.00

INTEGRATE ADJUINT ECQUATICNS
F = TI*F + .5D0% PCPSI*PSI = o
CALCULATE THE GRADIENT OF THE HAMILTONIAN

© T = 10.D0
TI = =0.100 . e I
X(1) =PCPSI

STOX2(1TAB) = PCPSI . .
GUITAB)==DEXP(~PZ34T)*(Z(ITAB)**(—PZ1))-X(1)
I = 1TAB

6

IN = 1
5 IF(INeEQe4 «CRs INoEQ.13)- GO TO .6
IF( INJ.EQ.3) GC TG 10
CIF( IN.EQ.5) GGC.TO 20
IF{ INJEQ.1)  GU TO 3¢
GO 10 12
30 X1 = STCX1(ITAB)
U= Z(ITAB) |
GO TO 12
20 X1 = STCX1(I-1)
= 2(1-1)
GO TG 12
10 X1 = (STOXL(I) + STOX1(I-1)}/2.00
U=(Z(I) + Z(I-1))/2.DC
12 CONTINUE
DU1)=X(1)%(PZ4=-(P2B*PZ2* (DEXP(PZT*T) )¥X1 %% (P22~140G)))
7 CALL STEP(&5)
I=1-1

06T



sToxa2(I) = X{(1)
G(I)=—DEXP(-PZ3%T)*(Z2(1)¥*(-PZ1))=X(1)
IF(I.GTel) GO TC 7

Tl

=0,100

'NFEVAL = NFEVAL + 1

RETURN

END

SUBROUTINE STEP(*)
_IMPLICIT REAL*8(A-H,0-2), INTEGER (I=-N) _

""COMMON FyOPTSTPyPCoPST ¢GSGsOFAs Ty TIX(10)4D{10),STOX1(101),STOX2(1
101),STOU(101) +6G(101)+S{101)+GG(101)sY(101) +IN,yIEND+ITAByIXsNFEVAL,
2NREINT ¢ NV KOUN

DIMENSION XS(10),DS(10)+Z(10)¢XD(1C).

10

20C
5000

1000}

1C¢1¢

1020

1C30.

GU' TO (10950910209104091C60¢50950+50950950¢50509132C,50000) IN
10 = e e e e
TS =
DO 20 I=14NV i
X0(1) = X(I)
DS(I) = D(I)
H=TI
H2 = o5D0%H_ o o
H6 = H2/3.D0O
T=TS + H2 L
DO 1C1C I=1,NV
XS(I) = XD(I) .
X(I) = XS(I) +H2#DS(I)
IN =3 e e e e
RETURN 1
DO 103C I=1,NV
DD = D(I)
Z(I) = DS(I) + 2.DC*0D
X{I)_ = XS(I) + H2%*DD .
IN = 4
RETURN 1
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1040 T= T +H2
DO 1050 I=1,NV

DD = O(I) -
e LU = ZUD) 0 26D0%DD e e
1050 X{I) = XS(I) + H*DD
IN =5
RETURN 1
1060 DO 107C I=1,NV . y
1070 ZOI) = He*x(Z(1)+D(I))
LL300.T0=T0 *#H e e
TS = TD
T=7S$
DO 131C I=l,AV
e e XDAL) = XDAL) o ZCL)
1310 . X({I) = Xo(I)
- IN = 13 — — . S .
RETURN 1
..1320 DO 1330 I=1,NV. _ il oo S
1330 DS(I) = D(I)
o .. 20 CONTINLE = _ . . Lo L , et
5020 IN = 14
e e RETURN - . et et i e
END

FUNCTICN SP(XXaYYyIMCDE)
. IMPLICIT REAL*8(A-H,C-Z) = o o o ..

COMMCN FoCPTSTP,PCyPSI yGSQeDFAsToTIoX(10)sD(10)ySTOX1(101)STOX2(1

101)sSTCU(L1QL) sG(L1OL) ¢S{L01) ¢GG(LCL)yY(101) oINy IENDyITAByIXoNFEVAL,

2NREINT yNV ¢ KCUN

DIMENSIGN XX(101),YY(1lC1l)

IF(IMODE.EQ.1) GO TC 1

IF(IMOCE.EQ.2) GO TG 2 _

SP = XX(1)/2.000
DO 3 I=2,1ENC
3 SP = SP + XX{I)
SP = SP + XX(ITAB)/2.D0
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SP = TI*SP

RETURN . - e
1 SP = XX{L)*YY(1)/2.D0

DO 4 I=2,1END

4 SP = SP + XX(I)kYY(I)

_SP = _SP + XX(ITAB)*YY(ITAB)/2.D0 _
SP = TI%SP
RETURN e e

2 SP = XX{1)*XX{(1)/2.D0
DO_5 1=2,1END
Z = XX(I)

S SP = SP_+ L*Z
sP SP + XX(ITAB)*XX(ITAB)/2.D0
SP

RETURN

END

SUBRUUTINE LINMIN(STPEST)
o IMPLICIT REAL*8(A=HeC=LZ)
COMMON STOX1(101),STOX2(101),STCU(101),G(101),S(101)F,OPTSTP,PC,
lPSIoGSQyDFA.NFEVAL.NRElNT,T Tl X(lO),D(lO)cNVyIN.IENDvITAB .
342 FORMAT('OALPEA=",D1446 92Xy 'BETA=*yC14.642X¢*DFA='4D144642Xy'DFB=

ID14eb92Xy 'F= ,le,SJZX. 1LPTSTP='4D14.6)

343 FORMAT(' ALPHA='9D14.62X+'BETA=" .Dl4.6.2X,'CFA='.014.602X4'DFB¥',

1014.692Xy 'F=? ,le. 22Xy YSTPEST='yDl4.6)

344 FORMAT(' ALPFA=',D1446 92X "BETA=! yCl4eb92X o' DFA='4D14.642Xy 'DFB=1,

1014069 2Xy 'F=1,D164842Xy 'OPTSTP=',D1446)
IWORK=C
. SSQ@ = SP(S¢542)
ALPHA=C.DO
30C FA=F i
301 BETA=ALPHA+STPEST
CALL FANDG(BETA)
DEB = SP{GySsl)
WRITE(69343) ALPHABETA 4DFA+DFByFySTPEST

TI*SP e e e i et e e e
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IF ( DFB «GT. 1eD18 ) GC TO 310
IF { FoGT<FA ,ORe DFB.GTs CeDO ) GO TO 302
ALPHA = BETA
DFA = CFB
STPEST = 4.DO%STPEST
GO TO 200
302 OLDF = F
o EBEFE e
303 U = DFA + DFB + 3.,D00%( (FA-FB) / (BETA-ALPHA) )
W = DSQRT( U*U =~ OFA®DFB ) . _ .. . . ... .. 4
FACTOR = ( DFB + W= U ) / ( DFB - DFA + 2,DO%*W )
IF ( FACTCR.GE ¢1+00_o0ORe FACTORGLT. GoDO ) . GO TO 311
. OPTSTP = BETA — FACTCR*( BETA - ALPHA )

__330 CALL FANDG(OPTYSTP) - — R

GSQ = SP(GyGy2)
. WRITE(6+342)ALPHABETA,DFA,DFBsF,OPTSTP. .
- DFOPT = SPIG9S 1)
IF ( FoeGTeFA +ORe FoeGT4FB )  GC TC 399
IF { DFOPTXDFOPT/(GSC*SSQ) .LT. C.0004D0 ) RETURN
399 CONTINLE . e

IF ( IWORKeGEeS5 oAND, DABS(OLDF-F).LEs1leD-07 ) GO TO 306
NN = 0 ) .. .
OLDF=F
IWORK = IWORK + 1
NREINT = NREINT + 1
IF ( FeGTeFA +OR, DFOPI.GTLCeDO) GD. TO 312... .

IF ( OPTSTP +GTe «7DO*ALPHA+.3D0%BETA ) NN=1
ALPHA = (OPTSTP

FA = F

OFA = DFUPT

IF {NN.EQ.1) GG TO 303

C TSTEP = Qe5D0¥{ALPHA®BETAY . o o o o o e

CALL FANDG(TSTEP)
WRITE(69344)YALPHABETACFA3DFBy FyOPTSTP
DF = SP(GsSy1l)

IF { FeGToFA J0ORe DF.GT0.0C) GC TO 320
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..306_

~3l0.

311

WRITE (6,341)

GO 71O 303

RETURN

STPEST .= C.1LO0 % STPEST .
GO T4 301

WRITE( 6, 34C ) FACTCR

. OPTSTP = 506 * { ALPHA + BETA )

312

320

321

340
341

GO TO 330 . D A o
IF { OPTSTP .LT. +3DO%ALPHA+.7DO%BETA )  NN=1
BETA = OPTSTP

FB = F

DFB = DFOPT . _ ..
IF (NN.EQ.1) GO TO 303

TSTEP = Q.50C*x(ALPHA+BETA)

CALL FANDGE(TSTEP)
WRITE(69344)ALPHABETAOFA,DFB»F»CPTSTP
DF = SP(GsSs1)

IFE { FelEsFA <AND, DF,LT.C,D0 ). . .60 TQ 321 — e e

GO TO 303

DFB = DF

F8 = F

BETA = TSTEP.
GO TC 303

DFA = DF .
ALPHA = TSTEP
FA = F

GO TO 303 ‘
FORMAT (' UNACCEPTABLE FACTOR CHCSEN FACTGR = '4D12.51}
FORMAT (1HG,32HLAST RESCRT EXIT TAKEN IN L INMIN)

- END . e e i e
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SUBROUTINE SEAR

IMPLICIT REAL*8(A-H,C-2) .-

COMMON FoCPTSTPyPCyPSI 9GSCyDFA9TyTI+X(10)+D(1C),STOX1(121),STOX2(1
101),STOU(L101)¢G(101),SC101)yGG(101L)sY(LOL) »INyIENDyITABsIXysNFEVAL,
2NREINT 9NV, KOUN

DIMENSICN SIG(101),HY(LGL)yXS{ T9101}yXSS{ 741011}

EQUIVALENCE(SIG(1),4HY(1))
JIE O IX eNEe KOUN) GC 1O 1

I[X=1

WRITE(6,4100)

100 FORMAT('1SYSTEM HAS BEEN RESTARTEC!)

RETURN

1 DO 2 I=1,1TAB
Y(l1)= G(I)=-GGCI) = .
2 SIGLI)= OPTSTP*S(1])

[1=IX-1

A= SP(SIGsYsl)x%(=0.5DC)

D0 3 I=1,1TAB

XS(IL,I)= A%SIG(I)

3 BY(L)=Y(])

IF(II.EQ.1) GO TU 12

ITI=11-1

DO 4 N=1,111 .

C SWITCH XS(NyI) TO S(I) AND XSS{N,I) TC GG(I) SINCE THEY ARE NOC LONGER NE

DO 5 I=1,ITAB

- SUI)=XS(Ns1)
5 GG(I)I=XSS(N,I)

A= SP(SsYal)

B= SP(GGyY,l)

DO 6 I=1,1TAB

6 HY(I)=kY(I)+ A*S{I)~- B*GG(])
4 CONTINLVE =
12 CONTINUE
A= SP{HY,Yol)%%(=0.5D0)
DO 7 I=1,ITAB
7 XSS{IL+I)=A%HY(])
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1

DO 8 I=1,41TAB

8 S({Il)=-GCL) . ... . . . C
DO 9 N=1,11

SNHNITCH XS(NoI) TO Y(I) ANC XSS(NsI) TO HY(I) SINCE THEY ARE NOT NEEDED
DO 10 I=L,ITAB
Y(I)= XS(N:I)

1C HY(I)=XSS(N,I)
A= SP(YyGyl)
B= SP{kYsG,I)
DO 11 [=1,1TAB

11 S{I)= S{I)= AXxY{I)+ BxHY(I)

9 CONTINLE
RETURN
END

LGT



198

IX. APPENDIX B

A computer code for solving problem T-3 using the
conjugate gradient algorithms and "penalty functions to

treat terminal state constraints.



IMPLICIT REAL*8(A-H,0-2)
COMMGN STOXL(101) 9STOX2(10L) 9STCUCLO1) 4G (131 )4S(101)4FeQPTSTP,PC.,
1PSI sGSQeDFASNFEVALyNREINT oToTI oX(10)+D(10) NV IN,IEND,ITAB
COMMON/MF/ PZL 4P22,P23,P244P25,P26,PLT4P18,4P21C
P21=0.6
PZ2=C.6
P23=C.03
. PZ4=C.C5
PZ25=0.Cl
PZ6=C.C25
PZT=P26%(1.DC-PZ2)+P25
PZ8=C,. 8419
PZ1G=1.,00/(1.D0-PZ1)
PC=3.DC
IEND
1TAB IEND + 1
IMAX 16
TI =.10C
NV= 1
ISTEP = 0O
NFEVAL =
NREINT =
STGX1( 1) 15.0C
STOU(Ll) = 2.25D0
T22 = T1
DO 16 I = 2,101 . .. . . ... .
STOU(I) = 2.2500 + 35D0%712¢
T2Z = T2Z + TI ..
> S(I) = C.D0
CALL FANDG(G.DOD)
GSQ = SP{GeGe2)
STPEST = L1D0/DSQRT(GSQ) .
CONTINUE .
DU 2 1=1,1TAB
S{I) = =G(1)
DFA =-GSQ

100

o

oo
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S CONTINUE
_OLOGS =656 . . . e e e tem i+ et

CALL LINMIN(STPEST)
ISTEP = ISTEP + 1
DO 3 1=1,1TAB

3 STOU(I) = STOU(I) + CPTSTP*S(I)

- WRITE (6911) ISTEP,NFEVAL ¢NREINT3F+GSQsPSIs (1o STOXL(I)sSTOX2()

17

18

30
4G

41
35
50
51

1

FORMAT (/77 DLS.17/7¢471717)

IF(ISTEP.EQ.4) GO TO 50
IF{ISTEP.EQ.8) GO TO 5C
IF.{ GSQ «LE. 1.D=04) GG _T0 30..  _..
IF{ISTEP.EQ.IMAX) GU TC 3C
STPEST = 2,D0%0PTSTP

IF { STPEST .GTe. 1.L0) STPEST = .5D0
BETA = G3SQ/0LDGS S
D0 4 I=1,1T7AB .
S(I) = =GUI) * BETA®SAI). . e e
DFA= SP(G4+Syl)
IF (DFA.GT.0.D0) GC TC 6.
GO T0 5
_WRITE (6,12) T e e
G0 70 1
WRITE(6:40) . : :
-FORMAT(1Xs*' TIME CuTPuUT SAVINGS?*)
T=0.D0
DO 35 I=1+1TABy4
Y1=DEXP(PZT*T)*PZ8*{STCX1(I])*%PZ2
S1l=(Yl-STOQU(I))/Y1l
WRITE(6941) TyYLl,S1
FORMATU(IH 43Fl12.6)

T =T + 4,DCx%TI
WRITE(&951)
FORMAT(1X,* TIME 7 ,20Xs'HANMILTCNIAN')

GSQ = SP(G1Gy2)

STOULT) 'G(l) 11=1'10194)
WRITE (6,17) QPTSTP

00c



laNeXe]

OO0

TYl=C.DC

DU 60 [=191TAB,1¢C

Hl= =DEXP(=-PZ3%TY1)*PZIO%(STOU(I))*%(1.DC-P21)

H2= STCX2{I1)%(PZB%*DEXP(PZT%TYL)*(STOXL(I))¥*p22-STOU(I)=PZ4%STOX1(
11))

. H=HL+H2

55
6C

11

12

WRITE(€955) TYI.H

FURMAT(1X¢F1l2¢69D36.10)

TYL=TY1+1C.DC*TI

IF (GSQ +LE. 1.D0-04) STOP

IF (ISTEP .EQ. IMAX ) STCP

GO TQ 18 .

FORMAT (///1HG+BHSTEP, NO.vSX,ZOHFUNCTIUN EVALUATIONSp5Xo16HREINTER
LPOLATIONS 920Xy 1HF 920X93HGSQ920Xs3HPSI/1HC s+ I5¢11851234D36.1C+D2046,
2023,6/1H0 32Xy SHINDE X9 13X 92HX1 9 18X 92HX29 19X 9 1HU9 19X 9 LHG//(1H 4136,
33X94020.8))

FORMAT ('CUPHILL DIRECTION OF SEARCH=--A STEEPEST DESCENT STEP WILL
LEGLLOW' ). C e e

END

SUBROUTINE FANDG(TSTEP)
IMPLICIT REAL*8(A—H,C-Z)
COMMON STOX1(101),STGX2(101) ¢STOU(101),G(101)sS(10L)+F+0PTSTP,PC,

1PSI+GSQyUFAINFEVALYNREINT 9 T9TI 9 X(10)9D(1C) 4NV, IN,IEND,ITAB

COMMUN/NMF/ PZL4P224P234PL4+PL5,P26,4PL7,P 28, PZ1C

DIMENSION Z2(101)

SAVE THE STORED CGNTRGL TABLE BY TRANSFERRING ITS CONTENTS TO Z
TABLE Z IS USED AS THE CONTROL IN THIS SUBROUTINE

1TAB

DO 1 =1,
Z{I) = STOU(I) + TSTEP*S(II

I

INTEGRATE THE STATE SYSTEM

T= 0.0C
X(1) = 15.00

T0¢C



aXeaNeke!

I=1
IN= 1

2 IF(INsEQe4 +UR. INJEG.13) GO T0 3

L IF(INCEQe3) U=(Z(1)+ Z(1411)/2,00 . .. ..
IF{INSEGC.S) U= Z(1+1)
IF(INSEQel) U= Z(1)

3 X1 =X(1)

o DCLY=(PZBXDEXP(PLTRT )X (X1 ) *%P22-U=-PZ4%X1)

4 CALL STEP{&2)

I=l+1 S
STOX1(1) = X(1)
IF(I «LYTe ITAB) GQ TC 4
PSI = X(1) = 29.16D0

_PCPSI =(PC)*PST .
F=(PZ1IC*(Z(L)%*(1l. Du-Pll)))IZ 00
£33 = F
TR = Cl.DO
DO 40 I=2421END
TR = TR + 711l

4G F=F-(DEXP(~ PZ3*TR))*PZlO*(Z(X)**(l.DO PZ1}))

TR TR+TI

F = TI*F + .SDU* PCPSI*PSI

INTEGRATE ADJOINT EQUATICNS /

CALCULATE THE GRADIENT OF THE HAMILTONIAN
X= 1000 . . L

Tl = =0.,1D0

X(1) =PCPSI

STOX2(ITAB) = PCPSI
G(ITAB)‘-DEXP(—PZB*T)*(Z(ITAB)**( PZ1)1-X(1)
1 = ITAB
IN =1 e e S -

5 IF(IN EQe4 oOR+ INeEG.13) GU TO 6
IF( IN.EQW3) GG TO 10
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[F( INJEQ.5) 6C TO 2¢C
JOF( INGEQel) . GC TC 30
Gao 10 12
30 X1 = STCX1(ITAB)
U= Z(I1TAB)
GO TO 12 . L
2C X1 = STCX1{1I-1)
JuUs 2a1=1
GO TC 12
10 XL = (STOX1(I) + STOX1(I-1))/2.00
U=(Z(I) + Z(1-1))/2.D0
12 CONTINUE
6 D(1)=X{1)%(PZ4-(PZB8%PL2%(CEXP(PZ7%T) )%RX1%%x(PZ22-1.DC)))
7_CALL STEPL&S5). .. . . .
[=1-1
STOX2(I) = X{(1)
G{I)=-DEXP{-PZ3*T)*({Z(I1)%%x(-P2ZL})=-X(1)
IF(I.GTs1) GO 10 7
TI =0.1D0
_NFEVAL = NFEVAL + 1
RETURN
END

SUBROUTINE STEP(*)

IMPLICIT REAL*8(A-H,C=Z), INTEGER (I-N)

COMMON STOX1(101),STCX2(101),STOUCLOL)+G(101),S(101)+FsOPTSTP,PC,
1PSI4GSQeDFA¢NFEVALyNREINT»TyTI #X(10)4D(10) 4NV, INy IENC, ITAB
DIMENSION XS{10),DS(10),Z(10),XD(1C)

GO TO (10950,102C+104G,106C+5095C+50450+50450,5091320,5000),IN

10 10 =T
1S =T o
D0 20 I=1,NV
XD(I) = X(I)
20 DS(I) = D(I)

5000 H=TIl

goe



1000 H2 = +S5D0*H
H6 = H2/3.D00
T=TS + H2
DO 1ClC I=1,NV
XS(I) = XD(I)
1016 X(1) XS(1) +H2%DS(I)
IN = 3
RETURN 1

c
- .1020 DO 1030 I=1,AV
0D = DUI)
. Z(I) = DS(I) + 2.D0%DD_ .
1C30 X(I) = XS(I) + H2*DD

RETURN 1
1040 T= T #H2 . L
DO 1C5C I=1,NV
DD = D(I)
Z(1) Z{I) + 2.00%DD
1050 _x(I)
IN = 5 -
. RETURN 1
106C DO 1CT7C I=14NV
1070 Z(I) = Hoe*(Z(I)+D(I))
1300 TD=TD +H

'

XS(L) + H*DD SO

hoec

TS = ID. e e

T =15
DO 131C I=1sNV
XD(I) = XD(I1) + Z{I)
1310 X{1) = xo(I)
IN = 13
. RETURN 1. -
1320 DO 133C I=1,NV
1330 Ds(1) = D(1)
5020 IN = 14 :
50 CONTINUE
RETURN
END _



FUNCTICN SP{XXsYY,IMCDE)
IMPLICIT REAL¥B{A-H,C-7)

COMMON STOX1(101)+STCX2(101)STCU(101)+G(10L)+S{101)+FsOPTSTP,PC,

. 1PSI+GSQeOFA,NFEVALyNREINT,T,T1,X(10)+D(10) NV, IN,TEND, ITAB
DIMENSION XX(1G1),YY(1Cl)
IF(IMODE.EQ.1) GO TC 1
IF(IMODE.EQ.2) GO TG 2

.SP = XX(1)/2.000
DO 3 I=2,IEND

3 SP = SP + XX(I)
SP = SP + XX(ITAB)/2.DO0
SP = TI*SP
RETURN

1 SP = XX(1)%YY(1)/2.D0 _ .
DO 4 I=2,IEND

4 SP = SP + XX{I)*YY(I)
SP = SP + XX(ITAB)*YY(ITAB)/2.,D0
SP = TI*5P
RETURN

. 2. SP = XX{1)%XX(1)}/2.D0 . _

DO 5 I=2,IEND
Z = XXt{I)

5 SP = SP + I%Z
SP = SP + XX{ITAB)*XX(ITAB)/2.00
SP = TI*SP

o RETURN - — - e e

END
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SUBRUUTINE LINMIN(STPEST)
_ IMPLICIT REAL#*8(A=-H,C-17)

COMMCN STOXI(lOl)95TOX2(101’95TCU(101)|G(101’QS(101,'FQDPTSTP1PC'
LPSI+GSQDFA, NFEVAL'NREINT9T0119X(10)vD(lGleVyIN IENC,ITAB
' 9Cl4e692X9'OFA='yD14.6+2X,'DFB="

342 FORMAT('CALPFA='4D14.6 92X 'BET A=

1014{@12X)'F;.001608[2x’ 'LPTSTP
343 FORMATI(' ALPFA=',D14.62X,'BETA=
N LDlé-boZXo'F='L0160 12Xy VSTPEST=
344 FORMAT (Y ALPFA=',01446,2X,'BETA=

1D14.692X9*F=%yD16.842Xy 'OPTSTP=

IWORK=C
SSQ = SP{S¢S5+2)
ALPHA=C.DO
30C FA=F .
301 BETA=ALPHA+STPEST
CALL FANDG(BETA)
DFB = SP(GySyl)

'Dl‘?.b)
' yLl4.6,
' 9D14.6)
!Cl406

"9yDl4.6)

WRITE(6¢343)ALPHA+BETADFADFByFySTPEST

IF ( DFB +.GT. l.D18 ) GC TO 310
IfF { FoGToFA JORe DOFB.GT. 0oDO )
ALPHA = BETA
DFA = OFB
STPEST = 4.DC*STPEST
G4 10 200
302 OLDF = F
FB=F

GO TO

2X ¢ ' CFA=

2X o' DF A=

352

303 U = DFA + DFB + 3.D0%{ (FA-FB) / (BETA-ALPHA) )

W = DSQRT( U*U - DFA*DFB )

FACTOR = ( OFB + w = U ) / ( OFB - DFA + 2.D0%W )
IF ( FACTCR.GE «1+D03 «ORe FACTURLLT.

OPTSTP = BETA - FACTCR*( BETA - ALPHA )

330 CALL FANLDGLUPTSTP)
GSQ = SP(G+Go21i

WRITE(69342)ALPHA,BETADFA,DFBFoUPTSTP

DFOPT = SP(GeSyl)

IF ( FeGToeFA oORe FeGTL.FB ) GC TC 399

G.00

'9D14.602X1'0FB='v

'yD14.6¢2Xs'DFB="Y,

) GG TO 311

80¢



IF ( DFOPT*DFOPT/(GSC*SSQ} «LTe C.0004D0 ) - RETURN
399 CONTINLE . S e
IF ( IWORK<GE+5 «AND, DABS(OLDF F).LE 1.0-07 ) GO TG 306
NN = 0
OLDF=F
IWORK = IWORK + 1
NREINT = NREINT + 1
~IF ( OPTSTP «GTe +70U*ALPHA+.3DO%*BETA ) NN=1
ALPHA = OPTSTP
FA = F
OFA = DFUPY
IF (NN.EQ.1) GC TO 303
. TISTEP = u.ﬁDO*(ALPHA*BEIAl e
CALL FANDG(TSTEP)
WRITE(69344)ALPHA,BETA,CFAsDFBs FyOPTSTP
DF = SPlGe¢S,s1)
IF ( F.GToFA ,OR, DF«GT.,0,0C) GC TO 320
GO TO 303
306 _WRITE (64341)_ .
RETURN
310 STPEST = C.1L0 * STPEST
GO TO 301
311 WRITE( 65 34C ) FACTCR
OPTSTP = .5DC % ( ALPHA + BETA D
GO 70 330
212 IF | OPTSTP oLTs +3DC*ALPHA+,TDO%*BETA ) NN
. BETA = QOPTSTP
FB = F
DFB .= DFUPT )
IF (NN.EQ.l) - GU TO 303
TSTEP = Q0.5DC*(ALPHA+BETA)
CALL FANDGL(TSTEP)
WRITE(69344)ALPHABETAyUFADFBsFyCPTSTP
DF = SP(GeS,y1l) ,
IF ( FeLESFA oANDe OFeLT4C,00 ) GO0 .70 321
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GO 1O 303
320 DFB = DF

FB = F
BETA = TSTEP
GO TC 303

321 DFA = DF L
ALPHA = TSTEP

FA = F
GO TO 303 '
340 FORMAT (' UNACCEPTABLE FACTOR CHCSEN. FACTOR =
341 FORMAT (L1HG,32HLAST RESCRT EXIT TAKEN IN L INMIN)
END_. et e e e
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	1972
	The computation of optimal growth in economic models
	Elmo A. Keller Jr.
	Recommended Citation


	tmp.1412711728.pdf.7Zprd

