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I. INTRODUCTION TO THE NUMERICAL SOLUTION OP 

ECONOMIC GROWTH MODELS 

During the past three decades much interest has been 

directed towards problems of decision making in physical, 

economic or organizational systems. This interest has been 

motivated primarily by the important economic benefits which 

result from correct decisions concerning the allocation and 

distribution of costly, limited resources. Also it has been 

ini-.plred by the repeated démonstration that r.uch models can 

be realistically formulated ami mathemalicall y analyzed to 

obtain #ood decisions. A thii'd reason for this trend is the 

arrival of high-speed digital computers which play such an 

important role in the development of large systems and the 

coupling of previously separate systems, thereby resulting 

in decision and control problems of increased complexity. 

The computer has rendered certain techniques obsolete while 

making other previously impractical methods feasible and 

efficient. 

Let u:: examine what is meant by the concept of "best" 

or "optimal" decision. An approach one may us.e is where a 

single, real valued functional summarizing the performance or 

value of a decision, is isolated and optimized (either maxi­

mized or minimized depending on the model), by proper selec­

tion among available alternatives. The resulting optimal 
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vector is taken to be the solution to the decision problem. 

A transformation from a vector space X into the space 

of real or complex scalars is said to be a functional on X. 

Real valued functionals are of direct interest to optimiza­

tion theory since optimization consists of selecting a vector 

from a given space to minimize or maximize a given func­

tional. 

To facilitate communication in formulating the problem 

we can classify models into four mutually nonexclusive classes. 

(1) Deterministic Model—neither the exogenous variables 

(determined outside the system), nor the endogenous 

variables (determined within the model), nor the 

parameters of the model are allowed to be random 

variables. 

(2) Stochastic Models—at least one of the operating 

characteristics of the model is a probability den­

sity function. 

(3) Static Models—neither the variables of the model 

nor the parameters take time into account. 

(4) Dynamic Models—deal with time varying interaction 

of variables and/or the parameters of the model. 

The equations describing the decision model may be de­

terministic or stochastic, and may be complicated from a 

mathematical point of view. However, the performance index 

has a simple underlying structure. 
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opt. i m i/.(• V - r(x,.v,a) , 
• {x 1 

X c Xj y G Y and a e A 

f ;  X x Y x A - i - R  

X = Vector that can be controlled and affects 
V. 

y = Vector that cannot bo controlled and 
aPfocti; V. 

a = Vector of parameter;: that affects V. 

f = Real valued functional. 

The problem then is to find values of the controlled 

variables which optimize the performance index subject to 

the restrictions given. 

A solution may be obtained either by (1) mathematical 

analysis, (2) numerical approximation, or (3) conducting ex-

perimenti- on the model (simulation). 

Till;; approach of formulating; decision problems has the 

virtue of simplicity and précision but It also has the limi­

tation due to the necessity of selecting a single objective 

by which to measure results. 

Let us now focus on the specific problem of interest, 

that is intertemporal optimization. Here we have the gen­

eral problem of choosing functions from function spaces that 

will optimize a given functional and also satisfy differential 

OÏ* di Pfoj-iMiJc- equations, initiai and/or boundary conditions 
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and possibly other constraints. 

Much of the classical theory of dynamic or intertemporal 

optimization was motivated by problems in physics and in the 

calculus of variations (4?). Associated witii these results 

are matliomat i o ians , Gaus.s, I'luior, I.ap:ran{';e and others. Much 

of tfic early work was in oh ta i ni n^^^ neccssary conditions for 

the solution of the problem. This approach of the classical 

calculus of variation was to transform the given optimization 

problem into another problem, namely, the Euler-Lagrange equa­

tion. The function that optimizes the functional also sat­

isfies the Euler-Lagrange equation. However, in most cases 

the Euler-Lagrange equation turned out to be a nonlinear two 

point boundary value problem. For a large system this by 

itself is a trif.hly formidable mathematical problem. 

Uurinfr rcHiont developments of optimization in decision 

problems, the c.las.sical methods have been ro-exaiiiined, ex­

tended sometimes rediscovered and applied to problems having 

quite different origin than those responsible for earlier 

development. Some illustrations of these applications would 

be in optimal economic growth models. For example, in any 

economic unit choices must be made between provisions for 

the present (consumption) and provisions for the future 

(capital accumulation). While more consumption is preferable 

to le;-.;-, al. r.iiy rnoirunil- in time, more con;-.umpt ion means less 

capital acci.iiiu l.at. 1 on. The :-.maller the capital a-.; cumul at i on. 
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the smaller the future output of the economic unit and 

therefore the smaller future potential consumption. Thus a 

choice must be made between alternative consumption poli­

cies. At one extreme is the policy of consuming as much 

today even though the potential for future consumption is 

jeopardized. At the other extreme is the policy of consum­

ing only a «abfvi tîtonce today so as to increase capital and 

the potential, for future conr.umption. "".I'he clioices made over 

time between con:;uiription and capital accumulation generate 

a set of time paths for consumption, capital, and output for 

the economic unit. Many growth paths are possible and to 

choose one of them, one must select an appropriate index of 

performance for the unit in question. Once this Judgment 

has been made, one faces the problem of choosing an optimal 

feasible growth path, that is the problem of optimal eco­

nomic growth. Th:i r, problem can be considered as a problem 

of i ntertempor-al optimi zat i on. 

The ;'.o;iution t.o the problem is not simple and perhaps 

cannot bo at ta inod even :If one defines and finds it. Yet it 

does seem helpful to have a clear picture of the optimal 

time path as a guide to the directions in which policies may 

be modified. Given the technical possibilities, the planners 

can by varying the time path of investments, vary the time 

path of consumption per capita. 

As AtT'-'W and Kurz ( 3) and Uzawa (72) point out in an 
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economy that is not centrally planned, the problem of optimal 

economic f';rowtli if. that of choosing appropriate mixtures of 

existing policy controls, such as monetary and fiscal policy, 

to attain the desired objective. More will be said about 

this idea in a later section 

If the planner;-, have a quantitative and unambiguous set 

of valuations of the time path of consumption, then by com­

paring the integral of valuations for any situation, they 

can obtain a measure of which is better. Hence the problem 

is to formulate and solve an optimal control problem 

The problem can be formulated by taking the state of 

the system by some state vector x(t) and taking the evolution 

of the economic system with respect to time by the dynamic 

equations, 

i = f(x,u,t) , x(t ) == X , h(x(t„)) = 0 
o o 1 

U i - : V , X = | | -  .  ( 1 . 1 )  

X e , u E , f : r" (1.2) 

where u(t) is a vector of controls or instruments and V a 

set of admissible controls. Each state vector is assumed to 

be a continuous function of time, so the trajectory 

{x(t)} = {x(t)cR" I t < t < t } 
' o — — t 
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is a continuous vector function of time. At any time t in 

the relevant interval, the choices to be made are character­

ized by r real numbers u^(t), UgCt), u^(t) called control 

variables and summarized by the control vector. Each control 

variable is required to be a piecewise continuous function 

of time so the control vector 

lu(t)} = {u(t)r.R^ 1 t^ ̂  t 2 

;I:'. a p.i ecow i continuous vector valued function. The con­

trol variables may be chosen subject to certain constraints 

on their possible values', summarized by the restriction that 

the control vector at all times in the relevant interval must 

belong to a given nonempty subset of R^: u(t)eV, t^ ̂  t <_ t^. 

One can take the preferences of those in the system 

to form the integral performance functional, 

ty. 
E = - r  l , ( x , u , t ) d t + 0 ( x ( t „ ) )  .  ( 1 . 3 )  

t ^ 
o 

Where L i:; a utility function and 0 is a terminal "bequest 

function" and [t^,t^] represents the planning horizon. Given 

this general structure (in either discrete or continuous 

form) one readily observes that the selection of an appropri­

ate economic policy to maximize E is precisely a problem in 

optimal control. 

An example would be where a centrally organized decision 
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making body select patterns of production and investment 

which would generate a set of time paths of sectoral growth 

to optimize an index of welfare for the complete economic 

unit. This type of problem determines the optimal alloca­

tion of investment between sectors at any point in time and 

the optimal time path of consumption. 

One can further classify growth models into two prin­

cipal classes. 

1. Consistency models—models by which one attempts 

to choose a pattern of resource allocation among various sec­

tors of the economy which is consistent with a given set of 

"targets" given for the end of the planning horizon. 

2. Optimal models—models designed to find the best 

by means of optimizing a utility functional of different 

time paths of resource allocation over the planning horizon. 

In the optimal control models, one has the following 

elements: (a) performance functional, (b) a dynamic model 

containing some variables appearing in the criterion func­

tional and (c) a subset of the model variables which can be 

controlled. 

In solving control problems of optimal economic growth 

one has the goal of finding a decision rule for determining 

the present control decision subject to certain constraints 

that will either minimize the deviation from some ideal be­

havior or that will maximize the functional consisting of a 
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utility function of certain system variables. The perform­

ance index is important because it, to a large measure, de­

termines the nature of the resulting optimal control vector. 

It is highly desirable that the index of performance'originate 

not from a mathematical, but from an applicational point of 

view. However In certain cases this choice involves compro-. 

mif.o:-. luM.wocn ri. riu^nn 1 ngPul évaluai i on of the system and a 

ti'.'icl.'il)] e nial-liemat ical oin. 

DUT:] cult i er. in ohooi-ing or constructing an aggregate 

utility function are recognized. These same problems also 

apply in obtaining a performance functional. Let us assume 

that we can construct a collection of such utility functions 

each possessing various properties and proceed from that 

point to determine sensitivity measures of how the control 

policy changes with respect to changes in structural features 

of the model. 

The riature and difficulty of the mentioned control prob­

lems vary considerably, depending upon the kinds of informa­

tion, and structure available in the following interrelated 

categories : 

1. Performance index, initial state, desired final 

state of the model and the planning time horizon. 

2. Characteristics and structural features of the 

dynamical system equations of the model. 

3. Characteristics of the allowable control and state 
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vectors and the nature of the constraints on them. 

4. Permissible Interaction between controls and the 

system equations and the solutions. 

In the pai'.t decade the theory of optimal control has ob­

tained theoretical tools such as Pontryagin's Maximum Prin­

ciple (58) (called minimum principle by many American 

authors; 47, 12) dynamic programming (5) and such numerical 

techniques as will be discussed later to approximate the 

solution to optimal control problems, given the necessary 

information for the model. 

The question of how the optimal state and control tra­

jectories change with respect to changes in certain features 

of the problem when one or more parts of key structural in­

formation takes on various values is studied later. 

The analysis is In the form of numerical experimenta­

tion dealing with nonlinear models under various economic 

hypotheses about the models. The solutions obtained will 

be numerical trajectories computed using recently developed 

numerical algorithms to solve optimal control problems. 

Frank Bamsey (60) considered a neoclassical model of 

production where the optimal trajectory of capital accumu­

lation max iiiii tho Integral over time of the utilities of 

per capita (Miniuuiipt. ion. 

I'.xtenx i onr, or elahorat i on:; of neoc I ar.:'. i cal opti tria l 

growth models have been compiled by KarJ .".hell (C>7) and an 
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exleui'.ivc? b 1 b.l i Oj';r';ipti.y p;:! ven by Dol)ol2 (21), and 

Do bell (13). Ti'oatment in altso given by Arrow and Kura (3) 

and Uzawa (7?.). Computation of the optimal paths was not 

the objective of Shell and associates. Arrow and Kurz or 

Uzawa. Rather they were concerned with the qualitative 

analysis of the solution by using Pontryagin's Maximum 

Principle (58). They analyzed conditions for the existence 

of optimal control time paths and the asymptotic properties 

of such paths. They do not specify any computing sequence 

or procedures to numerically solve the optimal growth models 

coninde^'ed, but rathei' analyze the steady state solutions 

and their economic meaning;'.. 

These theoretical models were designed to analyze the 

characteristics of any economy in asymptotic optimal growth. 

One of my objectives is to develop and solve numerically 

certain finite horizon optimizing growth models which allow 

the specification of production and welfare relationships 

in a nonlinear form and thereby analyze some properties of 

such models. 

DiîLiM'm i n i i; I-u; opt I mal f.rowtli model may bo divided into 

two (".l'oup:: : a/';r;i'ri;;ative and d i iiaf'^^ireria L i vc . The af.grogative 

model;-, ai'o r;r;not'ally ba:'cd on tlie a;;;'.uiiiptioii of a slnfile sec­

tor. The disaggregative models seek to specify the relative 

rates of growth for several interdependent sectors of an 

economy. An intermediate case between the two types of 
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growth models is provided by intersectoral models, where 

the different sectors are completely independent or sub­

stantially so. 

There exists a wide variety of economic growth models 

having different degrees of disaggregation, different levels 

of dynamic relationships and possibly different policy im­

plications. The choice between alternative models presents 

a difficult task, especially if one's interest is in apply­

ing some of the current growth theory to planning and de­

velopment . Some critical areas include the various linkages 

which exist between an aggregate model and its disaggregated 

version and also the implication of certain types of balanced 

growth which may have an oscillatory tendency. 

In Chapter l6 of his book, Morishima (52) treats a 

model and conditions required for the simultaneous optimiza­

tion of capital accumulation and population growth. He 

emphasizes among other things the potential danger of cyclical 

oscillation in per capita consumption and output in turnpike 

models of long-run economic growth. 

Operational planning models based on specific policy 

formulations relating to economic growth and stabilization 

for development planning have been considered by various 

authors. One may mention the planning and programming models 

for countries such as the Netherlands (l4, 15), Norway (7), 

at different levels of formulation and actual application and 
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other models formalized by Chenery and Bruno (17), Lange 

(42)J Mahalanobis (48), Klein (40, 4l) and others. 

Generally development planning models are concerned 

with economic growth within a medium or long range time 

horizon. Policy models are usually formulated for short 

term stabilization purposes, often within a growth framework. 

riannlnc methods specify the role of planning in achiev­

ing economic objectives. Planning model;; without any control 

are generally either a linear or nonlinear programming prob­

lem within an input-output framework. A number of things 

are required to be fixed in the model and hence their effects 

on the optimal solution cannot be determined. Some of these 

include the time horizon and terminal constraints on various 

state variables. There is no possibility of updating and 

modifying the solution and no test of sensitivity in a com­

plete sense. 

Planning with control as in a control problem using 

penalty Cunctionn to handle terminal constraints allows one 

to adjust the time horizons, the terminal constraints and to 

determine sensitivity measures on these parts of the model. 

One can solve such control problems numerically that may be 

analytically intractable in terms of elementary functions. 

One can mention some reasons for giving thought to 

dynamic economic models in a frame of reference of optimal 

control theory. In a centrally-planned economy the planners 
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have a direct Influence on the time paths and character of 

economic growth and may wish to have the benefit of economic 

analysis in wielding that influence. Also one needs a ref­

erence to which other possible time paths may be compared. 

It may be useful to have as that bench mark an optimal path 

with respect to certain indices of performance. In addition, 

one notes that in the individual enterprise economies, the 

main determinant of savings and hence investment are the de­

sires of business firms to control their survival and growth 

by internal financing (accumulation of capital), and the con­

cern of individuals with their support in old age and with . 

the economic opportunities of their children. Even in these 

economies, governments have a considerable influence on sav­

ing:-. and on other a:'.pocts of economic growth. Thus the same 

consideration as fii*t>t mentioned applies there also. Dis­

tribution problems between individuals living at the same 

time are ignored. 

Many feasible time paths are possible in a growth prob­

lem. One way to compare such feasible paths is to construct 

appropriate measures of performance and frame the problem in 

a control problem format. Also comparisons can be made in 

terms of the squared deviation from a given desired trajectory 

subject to the constraints of the dynamics of the model. 

Computation of optimal conti-ol also allows one to examine 

possible feedback relations where the controJ ve;tor is a 
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function of the state vector over a given horizon. 

A second reason is the success of control theory in 

fields other than economics (4, 12). In the last few years 

many new algorithms have been developed for the computation 

of control problems (44, 70, 1, 53). Insight gained using 

these algorithms on small economic models may give insight 

to the analysis of larger more complex models and to the 

feasibility of using such algorithms on large planning models. 

A comparison of the optimal time paths to the trajectories 

generated using feedback and simulation is also needed. 

Computation of small economic models serves to reveal sen­

sitive parameters in the model. 

Consider the economic meaning of the Lagrange multi­

pliers in the general classical programming problem. 

maximize P(x) , subject to g(x) = b , (1.4) 

where 

L(x,X) = P(x) + X[b-g(x)] (1.5) 

X E R 
n 

n > m 

F : R* + R 

b G R ,m 
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The Lagrange multipliers at the optimal solution measure the 

sensitivity of the optimal values of the objective function 

P* = F(x*) to variations in the constraint constants b. 

* _ 3F* 
1 ~ 3b^ 1=1,2,...,m . (1.6) 

For example, if any Lagrange multiplier were equal to zero 

at the optimal solution, then umall changes in the corres­

ponding conr.Ui'aint constant would not affect the optimal 

values of the objective function. For problems of economic 

allocation in which the objective function has the dimension 

of value, and the constraints specify a certain value for a 

given quantity, the Lagrange multiplier measures the sensi­

tivity of a value to changes in a quantity and hence a price, 

often called a shadow price. 

Given the nonlinear programming problem, 

max F(x) r,ubjoct to g(x) ̂  b , x>_0 . (1.7) 

The Lagrange multipliers can be interpreted as in the 

the classical programming problem, 

^i ~ 1=1,...,m. (1.8) 

To the. extent that objective functional has the dimen­

sion of an economic value and the state variable has the 

dimension of an economic quantity, then the adjoint variable 
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in a control problem has the dimension of a price, a shadow 

price. This interpretation of the adjoint variable is the 

dynamic analogue to the interpretation of the Lagrange mul­

tiplier for static optimization problems (36). 

The implication of a time path of shadow prices in the 

control problem and the indirect control through price guid­

ance is a topic of interest. That the market place solves 

the economic problem of equating supply and demand by suc-

cesiîàve approximation using feedback to the equilibrating 

price or pric.o:'. ir. a fami 1 iar concept. In a uingle market, 

each tippi'oxiiiiai. :i on i'o:iultf. In naming a price and calculating 

the difference between supply and demand at tiiat price. The 

next approximation involves adjusting the previous trial 

price in a manner governed by the difference, with the idea 

of causing the difference to vanish. 

Lange (43) points out an important limitation of the 

market is that it treats the accounting problems only in 

static terms. It does not provide a sufficient foundation 

for the solution of growth and development problems. In 

particular it does not provide an adequate basis for long-

term planning. For planning economic development, long-term 

investments iiave to be taken out of the market mechanir.m and 

based on judgment of developmental economic policy. This is 

because present prices reflect present data, where as invest­

ment change; data by creating new technical conditions for 
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production and frequently also by creating new wants. In-, 

vestment changes the conditions for supply and demand which 

determine equilibrium prices. 

The theory and practice of time staged mathematical 

programm 1 ng ruakoi-. it possible to introduce economic account­

ing into thiy proccnîs. After setting up an objective func­

tion and certain constraints, future shadow prices can be 

computed. These shadow prices may serve as an instrument of 

economic accounting in development plans. Actual market 

equilibrium prices do not suffice here, knowledge of the com­

puted future shadow prices is needed. Here computation does 

not replace the market, but possibly it may fulfill a function 

which the market never was able to perform. 

Since welfare economics assures us that under certain 

assumptions (2) as to the utility function and productive 

process a competitive equilibrium can be Identified with an 

economic optimum, it appears that the method of successive 

approximations which solves the problem of market equilibrium 

is also a computational method for solving the problem of 

optimal resource allocation. An interesting question to 

consider then would be, "is the reverse true? Does solving 

the problem of intertemporal optimal resource allocation, 

generate the tinK? paths of prices?" Certainly for a large 

oconoiinc syi-.tom a completely centralized organization would 

require storage capacity and processing that exceeds anything 
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likely to be available. Thus a reason for the computation of 

optimal economic growth models would be to analyze and study 

the above question for small economic systems. If the adjoint 

variables are prices, how does the market mechanism and a 

central planning process compare with regard to respective 

transaction costs and iteration costs, information processing 

and computation. Is the convergence of the control theory 

algorithm analogous to the convergence of the market mechan­

ism? Some of these questions may be studied by the computa­

tion of small models. 

For a growth model to be considered operational it must 

explain the observed process of growth of an economy by means 

of a set of quantitative variables so that the empirical 

realism of the model may be tested. In addition it must con­

tain a set of variables amenable to control by one or a set 

of policy makers such that the observed process of growth may 

be influenced by the control variables to converge to an 

optimal process of growth when the optimality condition is 

defined in some meaningful economic sense. An economic mean­

ing of the computation of growth models would be to show that 

the model is operational. This would also give an indication 

of the feasibility of handling large complex models through 

the same procedure—that of system analysis applied to plan­

ning models in a frame of reference of optimal control. 

Numeri.;a;i ana] y si s considerations of the meaning of tlie 
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computation would include: 1. determination of a numeri­

cal solution which could not have been obtained analyti­

cally, 2. comparison of the effectiveness of the control 

algorithms used, 3. indication of the convergence properties 

of the control algorithms and an approximate measure of 

their cost, 4. indication of the sensitivity to errors in 

the computational process by the algorithms considered, 

[). conipai'ii'.on of' how the alp.or l thms respond to penalty func­

tion formulat i on to handle terminal conr.trairits on the 

state variables. 

As indicated Shell (67) did not, as mentioned, perform 

computation on the models that were studied. They were 

concerned with qualitative analysis only. My objective is 

to consider two problems that were not there explored. 

First I consider the problem of how to actually perform 
1 

the numerical computation of such.models. The difficulties 

of the procedures involved in this computation, and the 

feasibility of using control theory algorithms to solve such 

economic models iu treated. Also considered is .the treatment 

of what time paths can be realized with respect to various 

parameter settings of the model. In addition the effect of 

using penalty functions to handle terminal constraints is 

studied. In the computational procedure one can obtain an 

approximate cost measure on the algorithm in terms of the 

number of iterations required to converge to a satisfactory 
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solution and the amount of computation per iteration.' I 

utilize the conjugate gradient algorithm and the Davidon 

algorithm. Penalty functions are used to. handle terminal 

constraints on the state variables. By using different 

algorithms in the control problem computation, one obtains 

an indication of which algorithm performs better. Speed of 

convergence to the optimal solution is generally dependent 

upon the algorithm used. 

When one applies these models, certain empirical prob­

lems need to be considered. Among these are some of the 

following. Policy makers and planners have certain pref­

erences which generate various desired values of the control 

variables. For example as treated in IJiri (35), planners 

may consider planning as the process of decomposing given 

economic goals into a set of subgoals which are more oper­

ational and controllable than the main goals. The planning 

process then becomes one which is directed towards.deriving 

a set of subgoals that will collectively achieve the given 

goals. The central problem becomes: How does one measure 

performance in the subunit or subgoal to determine performance 

in terms of a given goal? 

In traditional theory a planner is supposed to be an 

optimizer. This should not be completely equated to the 

idea of "rationality" since requisite degrees of knowledge 

may be abluent, for instance when uncertainty is present. It 
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may then be "rational" to be a "satlsfIcier" (49) and thereby 

proceed "rationally" towards goals that he sets for himself 

or others rather than seek an optimum. 

Suppose that one has a subunlt model within a given con­

trol or noncontrol framework. This submodel problem is 

solved to obtain an optimal control vector u*(t) for the sub-

unit. One could then use this u*(t) as a desired time path 

in the aggregative complete model, where the index of per­

formance is the squared deviation from the subunlt optimal 

path and the dynamics reflect the complete model constraints. 

4 2 
minimize = / (u - u*) dt . (1.9) 

o 

X = g(x,u,t) . (1.10) 

x(o) = x^ , x(t^) = x^ . (1.11) 

This suboptimization procedure allows a compromise re­

sult to obtain a solution close to the desired path. If 

the index of performance is larger then a given tolerance, 

one may sacrifice some in the subunlt and modify the subunlt 

control time path u*(t) and then repeat the process. 

This procedure allows for trade offs between the com­

plete control model and subunlt models. Computation of such 

a problem Is undertaken in Chapter 3B and 3C to provide in­

sight into the feasibility of such a decomposition procedure. 
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l^oth dotcrmi rvU'.t 1 c and f.tochastic simulation are alr.o util-

l/.cd ;i:; writ ;i;-. tin.' control problem algoi-ltluu appi'o;icli. 

Ottier ways In which the desired path may be determined 

Include treating the desired path as a constant, say con­

sumption per worker subsistence level, with or without a time 

trend. Sengupta and Walker (66) used as the known desired 

path a subsistence level of consumption required for the 

t th year which is a function of the size of the population. 

Desired path 

C* = c. 
'h P(B) 

where P(t) is the population an a function of time, B is a 

given base year and Cg is the level of consumption for the 

base year B. 

If the objective of the study is a stability analysis 

and one wishes to have the output of the economic unit main­

tained close to a desired trajectory, then the desired path 

may be a predetermined constant level of GNP, again possibly 

with a time trend. Vanden Bogaard and Theil (73) used the 

desired output 3n stability studies, Y* = (C^)(1.5)(l+a)^ 

where a 3 the presumed net birth rate. 

Another possibility for the desired time path would be 

obtained by not considering the objective functional and 

eliminating the excess degrees of freedom in the system 

dynamics by assuming that the control variables are functions 
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of the state variables. The differential system may then 

be solved and the control variables can be computed and 

used as desired values for an optimal model. One could 

begin by assuming simple feedback relations to obtain the 

desired paths. 

Also implicit in applying economic models is the prob­

lem of the sensitivity of the model parameters, that is, 

how the optimal time paths change with respect to changes 

in the model parameters. Many times the parameters are 

statistical estimates. Sen (63) and Chakravarty (l6) have 

studied this problem for special one sector models with 

linear dynamics which admitted analytical solutions. Their 

investigation was on three main political elements in the 

formulation of the economic model in terms of maximizing the 

sum of utilities within a finite horizon; (1) the choice of 

a utility function, (2) the choice of a time horizon, and 

(3) the choice of the terminal stock of capital. The first 

of these is a part of any optimizing program. The latter 

two result from restricting the period to a finite time 

horizon. Finite time horizons fit easily into the con­

venience of planning and the question is not one of a com­

plete break with the future, since the terminal stock of 

capital provides an adjustable link between the period with­

in the horizon and the period beyond. One could argue that 

if problem (3) is well solved, the arbitrariness of (2) 
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could be eliminated. The previously mentioned authors 

studied this problem; 

tf 
maximize F = f e~P^U(C(t))dt . (1.12) 

o 

subject to K = bK(t) - C(t) , (1.13) 

K(o) = K and K(t^) = . (I.l4) 

K(t) = aggregate stock of capital, 

C(t) = aggregate flow of consumption, 

b = output-capital ratio 

U(C(t)) = utility function = [C(t) - C*(t)]°, 

C* = given subsistence level. 

The terminal stock is computed from various growth 

rates g of capital over the time horizon. 

Chakravarty (l6) using t^=20, b=l/3, a=.4 concluded 

by analyzing the various time path data that the best con­

sumption profiles are insensitive to changes in g within 

the range [.05, .15]. He simply compared the numerical 

values of the trajectories for different growth rates. 

Sen (63) found that for g e[.15, .325] the consumption 

profiles are highly sensitive to the growth rate of the 

capital stock. He defined an over-subsistence consumption 

function x(t) = C(t) - C*(t) and a "sensitivity indicator". 
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n, as follows: 

n = |dx(0) / x(0) 
I dg / g • 

This Indicator was used to analyze the sensitivity of the 

trajectories. 

Another reason for the consideration of the computa­

tional aspect of the optimal growth economic model would 

be so that one could analyze models which have nonlinear-

ities in the system dynamics and also time varying produc­

tion functions. Sensitivity studies as mentioned above 

could then be analyzed on nonlinear, time varying problems. 

Problems of control are associated with dynamic sys­

tems evolving in time. Control or guidance refers to di­

rected influence on a dynamic system to achieve a desired 

performance. A small number of interesting, nonlinear dy­

namic optimization problems can be completely resolved 

analytically by using techniques of 1. Calculus of Varia­

tions ( 3 2 )  or 2. Pontryagin's Maximum Principle ( 5 8 ) .  

However, the great majority of dynamic optimization prob­

lems must ultimately be solved by computer methods. The 

reason for this is not that the necessary conditions for 

optimality are difficult to derive, but rather that the 

solution of the resulting nonlinear equations is usually 

beyond analytic ti-actability. 

There are two basic approaches for resolvinK complex 
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il.yii.Mitilc opt i.iii 1 zat 1 on problema by numerical techniques: 

1. Formulate the necessary conditions describing the 

optimal solution and solve these equations numer­

ically usually by some Iterative scheme. 

2. Bypass the formulation of the necessary conditions 

and implement a direct search for the optimum. 

Although the field of optimal control has received much 

specialized attention in recent years, it cannot be dis­

associated from the noncontrol branches of optimization such 

as linear programming., nonlinear programming, and the cal­

culus of variation». These noncontrol branches of optimi­

zation theory have contributed greatly to the development 

of Iterative techniques for solving the control problem. 

The terms direct and Indirect are frequently used to clas­

sify the many numerical techniques that have been used. 

Indirect methods are those which attempt to produce the 

optimal control by satisfying the necessary conditions for 

optlmallty obtained from the calculus of variations or from 

Pontryagin's Maximum Principle. In general, the application 

of these necessary conditions leads to a two-point boundary 

value problem. Moat Indirect methods, as a result, are 

characterized by an Iterative modification of either the 

boundary conditions or the differential equations. 

In contrast, direct methods are those that select 

successive trial control functions based on Information 
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obtained from the value of the functional and its gradient 

for previous control choices. The methods usually require 

the choice of an initial control function which is used to 

determine a direction of search in the space of allowable 

control functions. The control change is the product of 

the direction of search vector and a scalar called the 

search direction parameter or search direction stepsize. 

Prom the control function, a new direction of search is de­

termined, and the process is repeated. The various direct 

methods differ mainly in the means used to determine the 

successive directions of search and the magnitude of the 

control stepsize taken in those directions. The conjugate 

direction methods are direct solution algorithms. 

The class of numerical techniques called conjugate 

direction methods combine the computational simplicity of 

the gradient techniques with the rapid convergence prop­

erties typical of second-order techniques. These methods 

do not require the computation of second-order partial 

derivatives in determining the direction of search. The 

improved direction of search results from the assumption 

that the objective function can be approximated by a quad­

ratic function in the neighborhood of the current search 

point. The properties of the quadratic function are used 

implicitly In the derivation of the methods to produce di­

rections of search that are superior to the negative 
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gradient directions. Two such procedures, the conjugate 

gradient and the Davidon method, will be discussed In 

later sections. 

In the general case of nonlinear systems with non-

quadratic performance criteria, the specification of opti­

mal control requires the solution of 2 n simultaneous first 

order differential equations for an nth order system with 

mixed boundary values. It represents a difficult problem 

in numerical analysis because the coupled equations are 

usually hlgljly unstable. 

In the next chapter some of the basic concepts as­

sociated with various numerical control algorithm pro­

cedures will be considered. The question of existence and 

uniqueness of an optimal control in what follows is avoided 

here, as in most numerical treatments, by assuming that a 

unique optimal control exists. 



www.manaraa.com

30 

II. NUMERICAL PROCEDURES FOR SOLVING 

OPTIMAL CONTROL PROBLEMS 

A. Introduction 

The development and use of the numerical methods of 

iriatlieiiiat leal optimization i:.; important to mnny scientific 

disciplines. As indicated in Chapter 1, an interest, many 

times, to the management scientist and economist is to a 

part of optimization referred to as optimal control. This 

field has received much interest in recent years, but is 

Integrally associated with other optimization areas such as 

linear and nonlinear programming and the calculus of varia­

tions. 

This chapter treats a class of iteration techniques for 

solving the control problem. First the gradient technique 

is presented. Steepest descent is perhaps the oldest direct 

method of minimizing an objective function of several vari­

ables, The procedure is based on the principle of choosing 

a trial solution that lies along the direction of maximum 

decrease of the objective function from the previous itera­

tion. The question of stepslze in the direction of search 

is Important—very small stepsizes are impractical and in­

efficient, while large stepsizes lead to convergence prob­

lems. Curry (19) suggested that from each point in the 

search, the negative gradient direction is to be followed 
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by a one dimensional minimization of the objective function 

to determine the optimal stepsize for the next iteration. 

With that procedure implemented the gradient method becomes 

a useful computational method. Bryson and Denham (10, 11) 

and Kelley (39) extended the use of steepest descent to func­

tion spaces. These and other authors have incorporated 

methods for handling terminal state constraints and certain 

state space and control variable constraints. 

Second order direct methods of solving optimal control 

problems have been developed by Breakwell, Speyer and 

Bryson (8) and others. These techniques are extensions of 

Newton's method for minimizing a function of several vari­

ables. A quadratic function of n variables can be minimized 

in one step if the search direction is taken to be the nega­

tive gradient direction premultiplied by the inverse Hessian 

matri:". If the objective function is globally convex, the 

inverse Hessian matrix evaluated at the search point gives 

additional second order information for new search direc­

tion that leads to faster convergence than the gradient 

method. Newton's method gives faster convergence at a cost 

of the evaluation of the inverse Hessian matrix at each 

step. In addition, if the Hessian matrix is not positive 

definite everywhere in the search space, Newton's method may 

not converge at all. Newton's method extensions to function 

space will not be treated in this chapter, but they have 



www.manaraa.com

32 

been used to solve control problems (12, 50). 

Second-order methods possess rapid convergence near the 

minimum, but they require greater computational effort than 

do first order procedures. In addition for starting values 

far from the minimum in certain problems, they may not con­

verge at all. Two computational techniques that have the 

efficienty and computational simplicity of first order meth­

ods but exhibit convergence properties approaching those of 

the second order methods will then be treated in Sections C 

and D of this chapter. These procedures like the first and 

uocond order techniques have their origins in finite dimen­

sional algorithms and are called the conjugate gradient and 

Davidon method. 

Basically, the improved directions of search results 

from the assumption that the objective function can be ap­

proximated by a quadratic function in the neighborhood of 

the current search point. The properties of the quadratic 

function are used in the derivation of the methods to pro­

duce directions of search superior to the negative gradient 

directions. 

Hestenes and Stiefel (33) published the conjugate grad­

ient method as a technique to solve a system of linear al­

gebraic equations. Fletcher and Reeves (26) used the con­

jugate gradient procedure to minimize a function of several 

variables, or equivalently, to solve a set of nonlinear 
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equations. Davldon (20) published another conjugate direc­

tion method such that when applied to a quadratic function 

sequentially constructs a matrix which approaches the inverse 

Hessian matrix. The directions of search chosen are the 

negative (^T'adient directions protnultiplied by the Davidon 

wei}.';litln|'; mati'Ix. lie called the procedure a variable metric 

method, but now it usually is referred to by his name. 

Fletcher and Powell (25) improved the original version and 

published computational results. Many others have written 

about these algorithms. Beckman (5) for one, presented an 

explanation of the conjugate gradient method. 

As in the case of the gradient method and Newton's 

method, both the conjugate gradient and Davidon's method 

have been extended to apply to functionals on a suitable 

function «pace. Hayes (31) extended the method in 195^. 

Mehra and Bi-yson (51), Lasdon al^. (45), Sinnott and 

Luenberger (68) have also extended and generalized the 

conjugate gradient method. Willoughby (71) has published 

computational results of the conjugate gradient algorithm 

to certain special problems. Tripathi and Narendra (70), 

Lasdon (44), Adachi e^ a2. (1) have made extensions of the 

Davidon algorithm to function spaces. The contributions 

of many of these authors will be treated in later sections. 

After treatment of the conjugate gradient and Davidon 

algorithm t(< continuous control problems, some other aspects 
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of computing will be considered, such at; discrete versions 

of the problem and a discrete version of the control problem 

treated by Bruno (9). His treatment of a linear economic 

growth model leads to a type of algorithm where one approxi­

mates the adjoint variables at the initial time and then 

Improves the estimate by an Iteration procedure relating 

linear programming and the dual linear program. 

A serious question that arises in a computer based 

study is whether to formulate and work with a continuous 

or a discrete time model. One Inevitably has to discretize 

problems for digital computer solutions. The control prob­

lem will be formulated first in continuous time and later 

in discrete time. 

My purpose here is to develop and analyze methods as 

useful tools for solving the following deterministic con­

tinuous optimal control problem. 

Consider a dynamical system, described by the system of 

nonlinear differential equations, 

x(t) = f(x,u,t) , f : Rn+r+1 ^n (2.1) 

where x(t) is an n x 1 state vector and u(t) is an r x 1 

control vector. A performance index, 

tf 
E = J L(x,u,t)d.t , (2,2) 

^o 
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n+r+i 
is specified where L is defined as: L : R R. It 

is assumed that the time interval Ct^,tp] is fixed and that 

the state x(t^) is specified. In addition the system may 

liave inequality and/or terminal constraints given by: 

h(x(t^)) =0 g : R"+^+l R® (2.3) 

g(x,u,t) >_ 0 . (2.4) 

In certain problems the terminal state constraints will be 

absent and these will be known as free end problems. One 

seeks a control u*(t) such that: 

a. u*(t) and the corresponding trajectory x*(t) min­

imize the performance index E, satisfy the dif­

ferential system (Equation 2.1) and initial con­

dition and, 

b. the resulting final state x*(t^) satisfies Equa­

tion 2.3 (part b may not be present in free end 

problems), 

c. u*(t) and x*(t) satisfy Equation 2.4 (part c may 

not be present in certain problems). 

We assume that: 

1. f(XjU,t) and L(x,u,t) are continuous functions of 

their arguments and that the first partial deriva­

tives of f and the first and second partials of L 

with respect to x and u are continuous and that, 

2. a unique solution u*(t) exists. 
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In the following I discuss n and r vector functions of 

time in the Hilbert spaces, L^Ct^jt^] and L^Ct^/t^]. A 

Hilbert space is a complete normed linear space equipped • 

with an inner product which induces the norm. The inner 

product of interest is given by 

^f T 
[x(t) I y(t)] = / X (t)y(t)dt (2.5) 

to 

where T indicates the transpose. The notation will de­

note the row vector of partial derivatives of L(x,u,t). 

The symbol f^ where f is an n-vector indicates an n x n 

matrix of partial derivatives as does The symbol f^ 

represents an n x r matrix. 

B. Gradient Method in Function Space 

One of the most reliable methods is to decouple the 

unstable system, integrate n equations forward in time and 

n equations backward in time. Then maximize the Hamiltonian 

function H at each time Interval using a gradient of H to 

improve the estimate of the control vector u(t). This 

algorithm is good for achieving an approximate solution, but 

final convergence may be intolerably slow. The notation 

i = l(l)n denotes that the index i starts at i = 1 and is 

incremented by 1 until i = n. 

Consider the system of differential equations 
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x^(t) = f^(x,u,t) , x^Ct^) = i 1 = l(l)n 

( 2 . 6 )  

where : R^+r+l •> R, where x(t) Is the n x 1 state vector 

and u(t) is the r x 1 control vector and t is the independent 

variable time. The performance criterion is the integral, 

t f  
E = [ L(x,Ujt)dt . (2.7) 

to 

We now define the Hamiltonian function as follows, 

n 
H(x,u,p,t) = -L(x,u,t) + I p.(t)f.(x,u,t) . (2.8) 

i=l ^ 1 

The adjoint system of equations is specified as, 

Pi(t) = - ffy (x,u,p,t) i = l(l)n . (2.9) 

Pontryagin's Maximum Principle (58) provides a neces­

sary condition that a specific control u*(t) is optimal. 

It states that a control input u(t) which minimizes the 

performance criterion E, maximizes the Hamiltonian func­

tion H. Rather than providing a direct solution to the 

optimal control problem, the maximum principle produces the 

result in terms of the solution of another set of differ­

ential equations. By maximizing II a relation between u(t), 

p(t) and x(t) can be generated. Hence the systems 2.6 and 

2.9 can be solved, if the necessary initial condition and 

boundary condition can be determined. Whether the system 
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2.9 of differential equations in terms of the auxiliary 

variables p = (p,...p ) can be solved depends upon the 
J- n 

existence of initial conditions for the system 2.9. Also 

the coupling between the state equations and the auxiliary 

equations affects the ability to solve the differential 

equation system 2.9. The initial and final conditions are 

usually known for the state variables, but are often not 

known for the auxiliary variables. Therefore a two-point 

boundary value problem may result in solving the system 

2.6 and 2.9. 

Let uf. consider first the free end point problem with- no 

inequality constraints for which the boundary values on the 

adjoint vector p(t) are given as: 

Fu(t^) = 0 , i = l(l)n . (2.10) 

The actual algorithm would proceed as follows : 

a. Select an initial control time vector as a first 

estimate of u(t). 

b. Numerically integrate the system 2 . 6  forward from 

t^j to tj, and store the state vector x(t). 

c. Integrate the adjoint system 2.9 in reverse time 

from t^ to t^ using the boundary condition described by 

Equation 2.10. 

d. At each step of the reverse integration the 

estimate of u(t) is Improved according to 
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u(k+l)(^) ̂  + ot^ (x(t),u(kO(t),p(t),t) 

o% > 0 (2.11) 

in such a manner as to maximize H at all times by a steepest 

ascent procedure. The constant must be determined by an 

independent search procedure. E can be calculated for dif­

ferent values of and then a polynomial fit made to de­

termine the value of a which minimizes E to be used in the 

next iteration. 

e. Return to step b and repeat the procedure until a 

specified convergence criterion on u(t), —, or E is satis-
V. 9U 

fied. 

Several variations of the method can be used. If the 

problem is not a free end point problem, one can define a 

penalty function and reformulate the problem such that all 

of the final state variables are free end problems. The 

performance index is redefined as, 

E* = E + J Z K,(x.(t_) - x.)2 (2.12) 
1=1 111 1 

where the terminal constraints are 

Xi(tf) = x^ i = l(l)n . (2.13) 

A minimum of E* is now determined without requiring the 

terminal values of the state variables to satisfy constraints 

2.13 exactly , but instead to require that a "penalty" be 
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paid for any deviation from the terminal values. 

With the mentioned modification, one can then use the 

previous algorithm with the part c (conditions on p^(t)) 

replaced by the following conditions: 

3E*(tf.) 
Pi(^f) —8x1— ~ Kj^(x^(t^) - x^) . (2.14) 

The trajectories x(t) and u(t) which minimize E* are 

close to the trajectories which minimize E subject to the 

specified end point conditions. 

The principal advantage of the gradient method is that 

convergence is not contingent upon a good initial estimate 

of the control trajectory. One is assured that the value 

of the functional to be minimized is decreased at each 

succeeding iteration. Some disadvantages are that the con­

vergence, although relatively good in the beginning of the 

iterative sequence, often deteriorates severely as the 

optimum trajectory is approached. Also the penalty func­

tion method required to solve problems with specified ter­

minal conditions introduces arbitrary constants which 

are required to be "large" at least for the final iteration. 

If the constants are chosen too large at any point in the 

iteration cycle, the new control will tend to improve the 

specified terminal values without much weight being placed 

on improving the actual functional to be minimized. If the 

constants are too small, the terminal conditions will not 
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be satisfied. Thus in practice, the success of the method 

if there are terminal constraints depends upon Judicious 

choices of the penalty constants . In Section A of 

Chapter 3 a report is given on my experience with the use 

of penalty functions for handling terminal state con­

straints. 

At this point I would like to clarify a notational 

procedure used in certain subsequent sections and by many 

American authors (47, 12). This involves a slight change 

in the statement of the necessary conditions for the control 

problem 2.6-2.7- Multiplying the Hamiltonian Equation 2.8 

by (-1), one obtains, 

n 
-H(x,u,p,t) = L(x,u,t) + z (-P,(t))f.(x,u,t) 

1=1 ^ 1 
(2.15) 

Now by redefining the adjoint variables, 

Xj,(t) = -Pj.(t) 1 = l(l)n , 

the following relationship is determined, 

n 
-H(x,u,x,t) =.L(x,u,t) + z Xi(t)f.(x,u,t) . (2.16) 

1=1 ^ 1 

Letting -H(x,u,p,t) = V(x,u,A,t), one notes that mini­

mizing V with respect to u Is equivalent to maximizing H 

with respect to u, where H is equal to -V. Also the new 

differential equations. 
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X^(t) = - 1 = l(l)n , (2.17) 

are equivalent to the differential Equations 2.9. This is 

seen, as follows: 

XjCt) = - + z (-XiCt)) " i = l(l)n . (2.l8) 
1 9x^  ̂ 9%! 

Substituting A^(t) =-p^(t) . i = l(l)n 

. T  n 3f 
-p (t)= + E p^(t) — i = l(l)n 
^ 9^i i=l S^i 

p^(t) = - i - l(l)n 

The necessary conditions for the solution of the control 

problem become Equations 2.6, 2.17 and minimize V(x,u,X,t) 

with respect to u(t). This formulation gives rise.to the 

term "minimum principle" rather than "maximum principle". 

The two are equivalent and in what follows most problems are 

considered in the format of the minimum principle.- The 

Hamiltonian H of Section A is defined as -H in subsequent 

sections, the adjoint variables as x^(t) = -p^(t). With 

this note, the notation in following sections should be 

clear whether it is used in the framework of the minimum 
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principle or the maximum principle. 

C. Conjugate Gradient Procedure 

This technique is an extension of the Fletcher-Reeves 

method (26) to control problems. If terminal conditions and 

inequality constraints are present, the problem must be con­

verted to an unconstrained form, possibly by penalty func­

tions. As in the steepest descent method, the gradient tra­

jectory must be computed and stored. In addition, the con­

jugate gradient technique requires the computation of the 

norm of the gradient and the storage of one other tra­

jectory, the actual direction of search. Lasdon e;t al, 

(45) have shown that the direction of search in the func­

tion space generated by the conjugate gradient method are 

such that the objective functional is decreased at each 

step. 

Like most other iterative methods, this procedure can­

not distinguish between local and global minima. In gen­

eral, the best that can be expected is efficient convergence 

to the bottom of whatever valley it starts in. The usual 

procedure for problems with local minima is to rerun the 

method with different starting values. 
; 

We note that the following problem, 

tf 
minimize J = g(x(t^)) + / L(x,u,t)dt , (2.19) 

^o 
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subject to X. = f.(x,u,t) x.(t ) = x , i = 2(l)n 
11 -L O ^ 

( 2 . 2 0 )  

can be reformulated as follows. Define a new state vari­

able Xj such that 

? L(x,u,t) x^(tg) = 0 (2.21) 

The index of performance 2.19 can then be rewritten 

as follows; 

^f 
J = g(x(t^)) + / x^dt = g(x(t^)) + x^(t^) = 0(x(tf)) 

to 
( 2 . 2 2 )  

subject to X. = f (x,u,t) x.(t ) = x i = l(l)n 
1 1 1 O J 

(2.23) 

It is assumed that given a control vector u. Equation 

2.22 and 2.23 can be solved for a unique state vector 

X = x(u), and thus J = J(u) is a function of u alone. The 

index of performance Equation 2.19 or in the alternate form 

Equation 2.22 may include penalty functions to account for 

terminal state conditions or other constraints. In what 

follows let u(t) be a single control function (r = 1). 

The extension to the multicontrol problem is straight­

forward . 

The conjugate gradient algorithm requires the 
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computation of the gradient trajectory. Let H, the Hamil-

tonian, be defined as: 

n n 
H = E A.f. = A^L + E f. X. 3 (2.24) 

i=l 1 1=2 ^ ̂  

and 

n af. 
-A. = E X .  , (2.25) 
1 ^ 3*1 

1 = l(l)n " (2.26) 

t=t^ 

and the gradient is 

g(u) = M . (2.27) 
au 

Let u^(t) be the ith approximation to the optimal con­

trol u*(t). The corresponding gradient g(u^) is computed 

by solving the state Equations 2.23 forward with u = u^, 

solving the adjoint system 2.25 with conditions 2.26 back­

wards in time and then computing g(u^) from 2.27. 

One then proceeds as follows: 

u^ = arbitrary , (2.28) 

Sq = S(%) i (2.29) 

and 
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Choose a = to inlnimizo J(u^ + (uwe ati inde­

pendent search routine to compute a) and then (2.30) 

"l+l = + "1=1 °1 ' 0 (2-31) 

Gi+1 = <2.32) 

'/<''j I ''1 "i ° '''.1+1 ' I K. ) (2-33) 

"1+1 ' •«1+1 (2.31) 

where 

tf 
(g. I  g  J  = / g.'^(t)g (t)dt . ( 2 . 3 5 )  

J- J t J 
o 

The new direction of search s^^^ is not the negative 

gradient direction -gi+i, but is computed using Equation 

2.34. The distance traveled in this direction is de­

termined by the one dimensional search problem of 

J(u^ + ots^) in Equation 2.30. One iterates by improving 

Uj^ at each step by generating search vector Sj^ using 

Equations 2.30 through 2.33 until a convergence criteria 

is satisfied. Lasdon e;fc al. (45) have shown that if u(t) 

is an element of a Hilbert space Q and J(u) a Prechet dif­

ferent iable mapping (47) from Q to the real numbers, then 

the conjugate gradient method when applied to J(u) gen­

erates directions s. which arc always directions of descent. 
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h + *si) <  0  ( 2 . 3 6 )  

01=0 

In the section on the gradient method the topic of 

penalty functions was introduced. Penalty functions were 

used to insure that the terminal conditions on the state 

vector were satisfied. We now wish to consider the opti­

mal control problem with Inequality constraints on the 

state and/or control vectors. Such problems can be solved 

numerically by converting them to a sequence of problems 

without inequalities by means of penalty functions. The 

type of penalty function most often used takes on small 

values when the state and control vectors are within the 

constrained set and increasingly large values when they are 

outside the set. This approach forces satisfaction of the 

constraints to a desired tolerance. Such functions have 

been used by Bryson and Denham (11), McGill (50) and others. 

The algorithms treated so far apply to problems in 

which there are no inequality constraints on the control 

and/or state variables. 

Linear (in both system and index of performance) 

optimal control problems must have control and/or state 

constraints to be well posed. For such problem:; the solu­

tion is always on a boundary constraint. For nonlinear 

problems wjth state and/or control constraints, part of the 
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solution may be on the constraint boundaries (constrained 

areas) and part may be inside the constraint boundaries 

(unconstrained areas). 

Integral penalty functions form an alternate approach 

to treat the above type of problem. Consider the scalar 

Inequality constraint 

g(x,u,t) £ 0 for all t^ <_ t <_ t^ . (2.37) 

The performance index J, (Equation 2.19) may be augmented 

tf 2 
J* = J + vi[/ [g(x,u,t)] H(g)dt] ( 2 . 3 8 )  

to 

where 

H(g) = 0 if g ̂  0 

=1 if g > 0 . (2.39) 

By a suitable choice of the constant p (positive if J is 

to be minimized and negative if J is to be maximized) the 

constraint 2.37 can be approximately satisfied. If |y| 

is taken too large the previous iterative algorithm will 

tend to concentrate more on satisfying the constraint than 

on maximizing or minimizing the performance index. As a 

result convergence is slow. 

Piacco and McCormick (22, 23, 24) have extended the 

penalty function formulation. They have considered penalty 
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functions of the above type and interior penalty functions 

for nonlinear programming problems. The Interior method 

works from inside the constraint set, with the penalty in­

creasing as the boundary is approached. Hence this method 

seems to avoid many of the problems associated with the ir­

regularity of the constraint boundary. Lasdon, Waren and 

Rice (46) have extended the interior penalty function tech­

nique to control problems as follows. 

Consider the problem formulated, in Equations 2.19 

through 2.23. Add to that formulation the following two 

constraints. 

h(x(tf)) =0 h : m < n . (2.40) 

g(x,u,t) >_ 0 h : R^^r+l j^s _ (2.41) 

Since as mentioned, one assumes that given u(t). Equation 

2.20, the differential system and initial condition then 

yields x = x(u). Hence the constraint Equation 2.4l 

g^(x(u),u,t) can be formulated as g^(u,t) and the objective 

function in Equation 2.22 0(x(t^)) as 0(u). 

Define the set, 

G(t) = {x(t) I h(x(t)) = 0} 

Let S denote the set of all controls u which together with 

their associated state trajectories x satisfy, 

(1) x(t^) E G(t^) and Vt^ ̂  t < t^ x(t) / G(t), 
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(11) g(x,u,t) >_ 0 for <_ t ;< 

Define S° as the subset of. S for which (11) above becomes 

g(x,u,t) > 0 for t^ £ t t^ . 

The Inequality constrained problem Equations 2.22, 

2.23, 2.40 and 2.4l can be converted to a problem without 

inequality constraints by adding a penalty function to the 

objective index Equation 2.22, This yields the no-called 

P-functlon: 

s ^f 1 
P(u,r) = 0(x(t^)) + r E J g.(x,u,t) ' (2.42) 

1=1 t 1 
o 

where r is a positive scalar. Choose r^ > 0 and u^ e S° 

and consider the problem of minimizing P(u,r^) starting from 

u^, subject to the differential Equations 2.23 and terminal 

conditions 2.40. This will be called the P-problem. 

If the penalty function term 

s V  ^  
r E / ^ dt (2.43) 
1=1 t Si 

o 

approaches infinity as any g^ approaches zero for 

t £ [t^,t^], this then leads one to expect that a relative 

minimum of P(u,r^) exists In S°. Lasdon et cQ. (46) have 

shown this to follow since the trajectory of steepest descent 

of P starting from u^, a path of which P(u,r) in strictly 
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decreasing, cannot penetrate the boundary of S. The mini­

mizing point depends on the choice of r and is denoted by 
1 

u(r^). 

Now consider repeating this minimization for a sequence 

of r values r^ > r^ > r^ ... r^ > 0. Each minimizing point 

u(r^) is in S°. Further, by reducing r, the influence of 

the penalty function term 2.43 which penalizes closeness to 

the constraint boundaries, is reduced and in minimizing P 

more computational effort is concentrated on reducing 0. 

Thus the sequence of points u(r^), ufrg), ..., u(r^) can 

come closer and closer to the boundary of the set S if it 

is needed and profitable, in terms of reducing 0. Thus in 

the limit r ->• 0 one would expect that the minimizing point 

u(r) approaches the solution of the inequality constrained 

problem. 

One must restrict u to be in S since P(u,r) may have a 

minimum exterior to S and only those within S are of inter­

est . In practice one can use minimization techniques which 

only need account for the terminal constraints 2.40, such 

as gradient methods. 

Lar-don e^ a^. (46) have shown that the sequence of P-

minlma converges to the minimum objective value of the 

original problem. If the problem stated by Equation 2.22 

is linear in x and u for all t and Equation 2.21 in convex 
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in X and Equation 2.22, h(x(t^)), is linear and each com­

ponent of Equation 2.23, g(x,u,t), is a concave function of 

X and u for all t, then the problem is one of minimizing a 

convex functional over a convex set S in u space. Such a 

problem has no local minima in S° distinct from the global 

minimum. In order to establish the existence of a P-problem 

minimum in S^, the following assumptions need to be made: 

1. is not empty. 

2. mln 0(x(t )) = V > -« . 
ueS ^ ° 

3. If there exists t* g Ct^,t^] such that for some 1 

g^(u(t*),x(t*),t*) = 0, then 

^f . 
J — dt = «> 

4. The functional 0 and all components of the vectors 

h and g are continuous In u for all u e S. 

5. {u I (0 < k) and u e S} is totally bounded for any 

finite k. 

Definition: If u is a point in S° then a local minimum of 
o 

the function P(u,r) relative to u^ Is a point u(r) e S with 

the property that in a small neighborhood of u(r) there is 

no point In S with a lower value of P, and 

P(u(r),r) < P(u^,r). Lasdon e^ aL (46) have proved the 
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following results about this SUMT application to optimal 

control problems. 

Theorem I. 

Any local minimum of Pfu^rg) over the set S relative to 

Uq E S°, is finite and at least one such peint exists. 

Theorem II. 

Under the assumptions 1-5 

lim [min P(u,r )] = v 
r^+0 ueS ^ ° 

Corollary: 

1. lim J(u, ) = V 
r +0 k ° 
k 

1=1 . 

The preceding results do not require any convexity as­

sumptions. It is only necessary that the global minimum of 

P(u,r,) for u e S° be determined for each r . 
^ k 
The solutions to each P-problem (x^^u^) satisfies the 

following conditions : 

X = f(x,u,t) x(t ) = X (2.44) 
o o 
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s r 
X = -H + z (g ) (2.45) 

^ 1=1 g^2 1 X 

where H = x'^f and h(x(t^)) = 0 

(2.46) A(t^) = (0^ + h^Tv) 

t=t|. 

H„ - Z ^ (g ) = 0 (2.47) 
1=1 

where v is a vector of appropriate penalty function con­

stants. 

D. Davidon Method 

Consider the control problem as formulated in the pre­

vious section. The objective function may include penalty 

functions on the terminal constraints and interior penalty 

functions if there are Inequality constraints. Hence the 

problem can be framed as an unconstrained control problem 

and solved by the sequential unconstrained minimization 

techniques discussed in the previous sections. 

Recent results have Indicated that the most efficient 

methods for unconstrained minimization which do not require 

second derivatives are those which, when applied to a 

quadratic function, generate conjugate directions (25, 20, 

56). Hence a quadratic function of n variables can be 

minimized in n steps or less. As indicated in the previous 
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section, the conjugate gradient method has been extended to 

optimal control problems. This section considers a dif­

ferent conjugate direction method, Davidon's algorithm, 

which appears to be more efficient than the conjugate gra­

dient method (59)• Extension of Davidon's method for min­

imization in n variables to control problems has been made 

(70, 1, 53). Consider first the Davidon method for mini­

mization of functions. Given a scalar function f of n 

variables x^, Xg, ..., represented by a vector x, the 

method can be described as follows. 

1. First an arbitrary starting point x° and a sym­

metric positive definite matrix H° (generally the identity 

matrix) are selected. 

2. Knowing x^, the gradient g^ = f^(x^) is computed. 

3. For the succeeding iterations, the 

matrix is computed by 

n i  =  H^ - l  +  (p l -1  o i - l  ̂ ) /  y i -1  

-(Hl-1 yl-1 yi-1^ y^"^) 

where = x^ - x^~^ and y^~^ = g^ - g^~^. Then 

pi = -H^gi. 

4. The next point x^*^ is obtained by a one-dimen­

sional search 
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= min f(x^ + aP^) . 
a 

5. Go back to step 2 and repeat until a convergence 

criterion is satisfied. 

The extension to optimal control problem follows (53, 

70, 1). The problem considered is that of minimizing a 

functional 

tf 
J = I L(x,u,t)dt + 0(x(t^)) (2.48) 

to 

subject to the state equations, 

X = f(x,u,t) X e r", u e r' ̂  n 

x(t^) = XQ . (2.49) 

If there are inequality or terminal constraints they 

are handled by a penalty function formulation. 

For this problem, for a given u, the gradient of J with 

respect to u on the constraint surface is given by 

g = L (t) + f ,^(t)x(t) . (2.50) 
u u 

The adjoint vector X satisfies 

-A = f ^(t)A(t) + L ̂  A E R" (2.51) 

where 
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= H (x(t^)) . 

Suppose the terminal state constraints are to be treated via 

penalty functions so that the augmented performance func-
1 m . 

tlonal J = ^ is to be minimized subject only to 

the differential constraints. Here, P is & p x p positive 

definite matrix of penalty constants. Then, if 1 denotes 

the iteration number, the algorithm can be stated as follows 

1. For 1=0 choose an initial control vector u^Ct). 

2. Integrate the state equations x = f from t^ to t^. 

3. Define the Hamiltonian function H = L + X^f and 

integrate the adjoint equations 

T 
A = -9H/3X, X(t^) = 30/3x(t^) + [ ( 3i|)/9x(t^) ] Pi|j , 

from t to t . 
I . o 

4. Compute the gradient vector g^ = g[u^(t)] = gH/au. 

5. If i > 0 compute the auxiliary functions 

y^Ct) = 

z^(t) = 

a^(t) = y^, 1 = 1 

^1 + 
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1/2 
b^(t) = z^/(z^|y^) 

where (v|w) denotes the inner product 

tf 
/ v'^w dt 

^o 

6. Compute the direction of search 

P ^ ( t )  =  - g ^ ,  1 = 0  

-8l - - (Cj|gi)Cj] , 1 > 0 . 

7. Let u_^^(t) = u^(t) + a^p^(t) and determine by 

performing a one-dimensional minimization of J: 

J(u^ + a^p^)^ J(u^ + YPj^) for all positive y. 

8. Replace i by i + 1; if 1 = q, where q is the pre­

determined restart integer, set i = 0 before re­

turning to step 2. 

Observe that step 5 requires that rN[l + 2(q - 1)] values 

be stored if a table of N values is used to represent each 

time function. 

In the preceding algorithm, it is noted that as the 

iterations proceed, the number of vector functions to be 
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stored increases. To remove the difficulty the preceding 

steps are carried out for only q iterations. Then the pro­

cedure is repeated starting with the steepest descent di­

rection, the negative gradient direction, at the (q+1) 

step. 

Pierson and Rajtora (57) have presented additional com­

putational experience with the Tripathi and Narenda version 

of the Davidon algorithm applied to control problems. They 

conclude that the algorithm, when applied to nonlinear 

optimal control problems incorporating penalty functions 

is at least competitive and probably superior to the con­

jugate gradient method. My computational experience, which 

is reported in Chapter 3» totally supports that claim. 

Also my experience indicates that the restart feature is 

actually an advantage rather than a practical necessity. 

In the problems that I considered, q was selected small, 

say 3J 4 or 5- This makes the storage requirement for the 

algorithm small and the convergence rate is generally en­

hanced. 

One should note that the search of the Hilbert space 

of controls for the optimal control is restricted to con­

trols satisfying Equations 2.49 and 2.51. The condition 

g(u*(t)) = iE = 0 

holds only at the minimum of J(u(t)). The expression. 
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g(u(t)) = _ 3H 
3U 

is the gradient to the Hamiltonian and points in the direc­

tion of increasing J. This is seen by noting that the first 

variation in J given from Equation 2.48 is 

6J = 
30 
3x 

t=t. 

+ / iSL dt 
t_ 

( 2 . 5 2 )  

The notation of 6J represents the first order approximation 

to J(u(t))-. J(u(t)) where û is a given nominal control. 

Using the definition of the Hamiltonian H(x,u,x,t) = 

L(x,u,t) + A^f(x,u,t) and requiring the satisfaction of the 

state differential Equation 2.49 results in. 

SL = 6(H - A^f) = 6(H - X^±) 

_ 3# ^ 3# _ _ 
3U ^ 3x ÔX - X ÔX 

or rewriting using Equation 2.52 one obtains. 

(2.53) 

(2.54) 

'J ' H 
u f m I 

«a + •3u 3X 6X - \^6x]dt 

t=t. 
(2.55) 

Integrating the last term in the integral by parts, where 

the respective vector components are: 
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dw. = dV^ = -x^dt 

•«J = If 6x^ - X (t)ôx(t) 
/f an'^ T • aw 

+ / Cf^ 6u +• ô^x(X + ||)]dt . 

"o "o 
8X' 

(2.56) 

HoweverJ ôx(t^) = 0 because the initial conditions are 

fixed. Using the optimality conditions 2.51, Equation 

2.56 becomes. 

ÔJ = / (f  6u dt (2.57) 

If the variation of the control u is along a direction 

of search s then, 

6u = s6a (2.58) 

where a is the scalar search-parameter. Thus the deriva­

tive of J along s is given by the inner product of 

9H 
9u 

and s. 

o 

3 H 

(2.59) 

Therefore — = ;r(u) is analogous to the ^^adient vector in 

riniite dimensional analysis. 
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This leads to a discussion of the one dimensional 

search procedure used to compute the optimal a for each 

iteration. Utilizing Equation 2.59 to compute the 

one dimensional minimization procedure is based on using 

a cubic polynomial fit relating J(a) and a. The functional 

J is evaluated at least twice and also two values of the 

derivative ̂  using Equation 2.59 are computed, hence a 
ua 

cubic polynomial can be determined. The positive value of 

a that minimizes the cubic polynomial is then chosen for 

the stepsize parameter for the next iteration. The pro­

cedure is similar to techniques used for finite dimensional 

problems (26) and will be explained in what follows. 

b a a a 

Figure 2.1. One dimensional minimization 
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The first step estimate for improving the control is 

given by 

1 / 2  
h = .l/(J (gFg) dt) . 

^o 

This estimate is used as the initial value to start the 

procedure at the first iteration. Then J'(a) where the 

prime indicates derivative with respect to the stepsize 

parameter a, is examined at the points a = 0, h, 4h, l6h, 

a, b. The symbol b represents the first of these 

values at which J'(b) is nonnegative or J(b) has not de­

creased. It then follows that a is bounded in the interval 
m 

a < ttjjj j< b where is the optimal stepsize parameter to be 

used in the next iteration. 

The next stage uses the cubic interpolation given by 

Davidon (20) where the positive critical value is computed 

from the cubic, fitted from the information contained in 

J(a), J'(a), J'(b)j and J(b). One defines 

2 = + J,(a) + J'(b) , (2.60) 

W = (z^ _ J'(a)J'(b))^/^ , (2.61) 

then the estimate of is given by, 

= h / J'(b) + W - Z , 
"e ^ (j'(b) - J'(a) + - a) 
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If neither J (a) nor J(b) is less than J(oig), then 

is accepted as the estimate of A check on the value of 

ot^ is the closeness to zero of J'(ajjj). If J(a) or J(b) is 

less than then according as is positive or 

negative, the. interpolation is repeated over the subinter-

val (a,ag) or (a^jb) respectively. The reinterpolation used 

here, if the cubic procedure did not work, is a form of 

linear interpolation on smaller and smaller intervals with 

an exit after a fixed number of trials. 

This technique of choosing the optimal stepsize of the 

search direction worked well for the applications of both 

the conjugate gradient and Davidon algorithms. 

E. Other Aspects of Computing 

1. Discrete control problems 

One inevitably must discretize problems for digital 

computer solution. One can work with a continuous time 

model and discretize to solve by discrete variable methods 

or the model can be represented as a discrete multistage 

system and solved directly. 

The mechanics of setting up a discrete time optimal 

control problem will be described and then solution methods 

considered. Each of the previously mentioned continuous 

solution algorithms has a discrete analogue. Also so does 

the penalty function formulation. 
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Consider the problem with no inequality constraints of 

finding the sequence u(0), u(l), u(N-l) and x(l), x(2), 

x(N) to minimize 

N-1 . 
J = 0(x(N)) + E L^(x(i),u(i)) , (2.62) 

i=0 

: R" X ^ R , 0 ; R" ̂  R 

subject to the constraints (x is an n vector and u an r 

vector) 

x(i+l) = fl(x(i),u(i)) i = 0,1,2,...,N-1 

x(0) = X fi : R* X R^ ̂  r" (2.63) 
o 

h(x(N)) = 0 h : R^ -> R^ q ^ n .(2.64) 

We can formulate the terminal constraint 2.64 as an exterior 

quadratic penalty function K[h(x(N))]^ and include it in the 

0(x(N)) function. Let us adjoin 2.62 with a sequence of 

multipliers A(i), 

N-1 , ^ 
J = 0(x(N)) + Z {L^(x(i),u(i)) + A^i+l) 

i=0 

[fi(x(i),u(i)) - x(i+l)]} (2.65) 

and define a scalar sequence (Hamiltonian) 

= L^(x(i),u(i)) + xT(i+l)fl(x(i),u(i)) (2.66) 
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Substituting Equation 2.66 into 2.65 we have 

rp N—1 . m 

J = 0(x(N)) - X-^(N)x(N) + S [H^ - A^(i)x(i)] + HO . 
i=l . 

(2.67) 

Now consider the differential change in J due to dif­

ferential changes in u(l). 

+ ^ du(0} 

+ ânfsy + âiinr • (z-ss) 

One wants to find conditions on x, u and X such that 

the standard first order optimality condition dJ = 0 is 

satisfied. Choose the adjoint multipliers such that: 

(2.69) 

° HOT" (2.70) 

one may specify the necessary optimality condition 

aRÎ 
3u(i) = 0 1=0,1,2,.. .,N-1 . (2.71) 

In summary, to find a control-vector sequence u(i), 

i=0(l)N that produces a stationary value of J, we must 
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solve the two point boundary value problem defined by 

Equations 2.63, 2.64, 2.69, 2.70 and the optimality con­

ditions Equation 2.71. 

Most gradient methods start with solutions that satisfy 

neither the optimality conditions Equation 2.71 nor the 

boundary conditions. The algorithms then generate itera­

tive solutions which improve the control trajectory at each 

iteration. 

Given a control trajectory u°(i) i = 0,1,...,N-1, the 

gradient procedure goes as follows; 

1. Integrate the system Equation 2.63 forward in time 

using u°(i). 

2. At the terminal time evaluate A(N) and using Equa­

tion 2.69 and 2.70 integrate the adjoint trajectories back­

ward in time. 

3. Using the calculated x(i), x(i) i = 0,...,N-1 cal­

culate the Hamiltonian 2.66 and its gradient with respect 

to u(i). 

4. Find the direction of search to minimize the Hamil­

tonian by using gradient, conjugate gradient or Davidon's 

method. Also make a one-dimensional search to determine the 

scale factor in the search direction. 

uk+l(i) _ +a^p^ p^ = direction of search 

5. Return to step 1 with a new u(i) trajectory after 
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possible modifications to the penalty constants. 

Another important approach to solving discrete control 

problems with inequality constraints 

gi(x(i),u(i)) < 0 i = 0,1,...,N-1 (2.72) 

is to consider them as large time-staged nonlinear pro­

gramming problems. The system Equations 2.63 form equality 

constraints and 2.70 form inequality constraints where 2.62 

is to be minimized (65). 

One may use some penalty function formulation to re­

duce the constrained problem to an unconstrained one, and 

sequential unconstrained optimization techniques to solve 

the problem (22, 23). 

A modification of the gradient method could also be 

utilized with inequality constraints by using SUMT tech­

niques with the original objective function 2.62. 

A difficulty encountered here is the size of the non­

linear programming problem if the time horizon is large. 

2 .  Discrete control growth model with inequality constraints 

A second approach to a discrete control problem is con­

cerned with the optimal growth and valuation in multisectoral 

economies in which the technology is of the discrete, activ­

ity-analysis,type. This model is due to Bruno (9) and is 

believed to have a considerable degree of realism and use­

fulness in the field of development planning. From the 
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computational viewpoint this analysis allows one to solve 

a large time-staged programming problem in terms of small 

subproblems. The link between the time periods is provided 

by system differential equations and adjoint differential 

equations. Bruno's (9) main concern in the analysis was to 

give full asymptotic characterization of the optimal time 

paths, the price behavior, and the nature of choice of al­

ternative activities for infinite horizon models. My 

interest is to analyze the computational procedures for the 

model, given a finite time horizon, and to check the feasi­

bility of the neighboring extremal algorithms applied to the 

model. 

Consider the prototype of the general model as a simple 

fixed proportion two-sector model. An economy produces two 

goods, a consumption good C and a depreciable capital good 

I (I = gross investment), with an exponential depreciation 

rate y. Each sector uses, as fixed proportion inputs, both 

capital and a primary factor of production, labor L, which 

is assumed to grow at an exogenously fixed rate n. 

The production technology is assumed to be given by a 

coefficient matrix A. 
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Introduction of the following notation gives: 

c(t) = C(t)/L(t) = consumption per capita, 

z(t) = I(t)/L(t) = gross investment per capita, 

z(t) = k(t) + Ak(t) k = dk/dt, and 

k(t) = = capital-labor ratio, 

A = n + M = gross rate of growth. 

One can then formulate the following optimal control problem: 

tf. 
I __ 2 

maximize J = f c(t)e dt - E2 [k(t_) - k^ ] 
to 2 f 

(2.73) 

where S = time rate of discount and PC is a positive penalty 

constant and the following constraints. 

(labor constraint) a^c + a^^z £ 1 (2.74) 

(capital constraint) a^c + a^^z <_ k (2.75) 

(nonnegative consumption -c £ 0 (2.76) 

(nonnegative investment) -z £ 0 (2.77) 

(and the differential equation) k(t) = -Ak(t) + z(t) 

( 2 . 7 8 )  

(boundary conditions) k(t^) = k_k(t_) = k. . (2.79) 
O O I 

The necessary conditions for the solution to this 



www.manaraa.com

71 

problem can be derived from either the calculus of varia­

tions or Pontryagin's Maximum Principle (58). One intro­

duces the Hamiltonian form, 

H(c,k,z,t,n) = e"^^c(t) + e~'^^Tr(t) [z(t) - xk(t)] . 

( 2 . 8 0 )  

H can be interpreted as the net national product per 

capita where net investment is valued at the demand price 

for capital n(t). All prices are in consumption units. 

Applying theorem 23 (58, p. 29) and the related anal­

ysis, we conclude that if a program [c(t),z(t),k(t); 

tg ^ t < t^] is optimal, then there exists a continuous 

function n(t) such that 

Tr(t) = (X + ^)IT - s . (2.8l) 

This is seen from writing inequalities 2.74 and 2.75 as 

equalities 

a^c + aQ^z + Eq — 1 = 0 , (2.82) 

a^c + a^^z + E - k = 0 (2.83) 

where E q and e are slack functions. Then from theorem 23 

we have. 

= - II . e-"w 

+ seT^t |_[a^c + a^^z + e - k] . (2.84) 
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Equation 2.84 reduces to 

ire ^^-6e *^^11 = -(-Air)e + s(-l)e , (2.85) 

and 

TT = (A + â)iT - s 

At each moment of time, gross national product, 

GNP = He*t + irXk = c + ttz , (2.86) 

is maximized subject to inequalities 2.74 through 2.77. 

This is equivalent to solving a linear programming problem 

at each moment in time. Its dual is: 

minimize De^^ = w + sk (2.87) 

where D is discounted gross national income, subject to 

the constraints; 

a^w + a-]_s >_ 1 (2.88) 

â iW + a^3_ s > TT (2.89) 

w > 0 (2.90) 

5 > 0 (2.91) 

w has the interpretation of the real wage rate and s that 

of gross rental price of capital. In the former notation 

k(t) is the state variable, c(t) and z(t) are the control 

variables, n(t)e~^^ is the auxiliary variable and w and s 

are the Lagrange multiplier functions. In addition ir(t) 
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must satisfy the conditions due to the terminal constraint 

on k(t), namely 

e ^Tr(t^) = PC[k(t^) - k^] . (2.92) 

Writing the inequality constraints in equality form 

one has: 

the Production Equations 

a _ c  +  a  , 2  +  e  = 1  
o ol o 

a^c + a^^z + e = k 

the Price Equations 

a^w + - P^ = 1 

a + a.^s - P = n 
ol 11 

for all t in the interval t < t < t_. The nonnegative 
o — — I 

slack variables have the following economic interpretation; 

^ = rate of unemployment of labor 

£ = excess capacity per unit of labor 

PQ = difference between the supply price and demand 

price of consumption 

r = difference between supply price and demand price 

of capital. 
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Prom linear programming theory we know that we must have 

we^ = se = PQC = Pz = 0 . (2.93) 

Now within the framework of the model as given one can 

consider the computational procedure. The matrix A is given 

as is also t^ and t^, kft^), k(t^), X and 6. With k(t^) 

given one estimates nft^) and then solves the primal linear 

program Equations 2.74 through 2.77 and its dual. This 

then with objective function 2.86 gives values for cCt^), 

zCtg), w(t^) and sft^). The differential Equations 2.78 

k = z~Xk and Equation 2.8l ^ = (a + 6)it-s allow one to 

step up the time interval for k(t) and n(t) to k(t^) and 

•rrCt^). The linear program and its dual are again solved 

generating c(t^), zft^), w(t^) and s(t^) and the iteration 

continues until k(t^) is computed. If k(tf) agrees with kf 

then the optimal time paths have been computed, if not then 

nftg) must be modified and the process repeated from t = tg 

to t = t^. Interpolation can be used to assist in the 

selection of a proper irCt^). This computational procedure 

could be extended to models with more sectors. But as the 

numbers of adjoint variables Increase, the problem of se­

lecting proper initial values for these variables becomes 

increasingly difficult. This procedure is sometimes called 

the neighboring extremal algorithm (12) and a statement of 

the method is as follows: 
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I 

1, Approximate initial values of the control problem 

adjoint variables at the initial time. 

2. Integrate the state and adjoint differential equa­

tions forward in time, at the same time make an optimal 

choice of the control variables using the current values of 

the state and adjoint variables and observe how far the 

state variables at terminal time miss the boundary condi­

tions . 

3- Using this observation modify the approximation of 

the initial adjoint variables unless sufficient accuracy 

has been obtained and go back to step (2) until a conver­

gence criterion has been met, 
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III. ECONOMIC APPLICATIONS AND NUMERICAL SOLUTIONS 

A. Introduction to the Control Problem Computation 

In this report, all automatic computations were per­

formed on the IBM 360/40 digital computer using Fortran IV 

language and double precision arithmetic with accuracy of 

approximately sixteen decimal digits. All Integrations were 

performed using fourth order numerical Integration methods. 

Fixed stepslze was used In the Runge-Kutta procedure. The 

Interval of Integration was divided up Into 100 equal sub­

divisions. Each one-dlmenslonal minimization required In 

a solution reported here was based upon a cubic polynomial 

approximation to the contour of the functional along the 

direction of search. After a satisfactory approximation 

was made, the positive value corresponding to a minimum 

of the polynomial was chosen as the optimum search-

direction stepslze. This procedure, described earlier, 

has been used extensively in finite dimensional problems 

and proved satisfactory here for control problems (26). 

At this point I would like to comment about using 

penalty functions to handle terminal constraints on the 

state variables. The penalty function approach is an 

alteration of the form of the optimal control problem 

itself, rather than a modification of the numerical tech­

nique used to solve it. The constrained problem is approxi­

mated by one or more unconstrained problems by adding to 
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the objective functional a positive measure of the con­

straint violation. 

The penalty function approach attempts to force those 

controls producing large constraint violations to lie on 

contours of higher objective functional values in the con­

trol space than those producing smaller constraint viola­

tions. The choice of the values of the penalty constants 

Influences the objective functional throughout the entire 

control space. I have found that for a typical control 

problem, the effect of the penalty term is extremely dif­

ficult if not impossible to determine without numerical 

experimentation. Therefore in many cases the choice of the 

values of the penalty constants is arbitrary and must be 

chosen on the basis of numerical trials. 

Some of the difficulties involved in using penalty 

functions can be avoided by replacing a single solution at­

tempt by a sequence of solutions involving increased weight­

ing of the constraint violation. Each new subproblem is 

started with the control computed from the previous sub-

problem. This problem has been studied.extensively as 

mentioned for finite dimensional optimization procedures 

by Piacco and McCormick (22, 23, 24). The choice, however, 

of the penalty constants for each subproblem must still be 

made arbitrarily at first and modified on the basis of nu­

merical experience with each subproblem. 
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Either the fixed or the Increasing sequence of penalty 

constants were used to solve the problems that follow. After 

initial trial and error with penalty constants fpr each 

problem, adequate penalty constants were determined to handle 

state terminal constraints. 

A nonlinear control problem with quadratic objective 

functional was given by Wllloughby (71)• This problem was 

used to check out the computer codes for both the conjugate 

gradient and the Davidon algorithms and the results are in­

cluded here to illustrate the convergence of the methods. 

A statement of this test problem, T-1, with the penalty 

function Included follows: 

minimize J = 1/2 f  (x^ + Xg + u^)dt + ECxgC 5) - x^CS) 

- 1.0)2 (3.1) 

subject to: 

= Xg x^(0) = 1 , 

2 
Xg = -x^ + (1 - X^)X2 + u , X2(0) = 0 , 

n(x(5)) = -x^(5) + x^(5) -1=0 . (3.2) 

The initial control estimate was chosen u^(t) = 0 for all 

t in the interval [0,5]. For the Davidon algorithm four 

iterations were performed before restarting with a direction 

of search chosen in the negative gradient direction. The 
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solution to the above problem is presented in Table 3-1. 

The penalty constant used was 10.0 and the Runge-Kutta step-

size was h = .05. In Table 3.2, the result of a sequence 

of subproblems is presented with variable penalty constants 

and initial control function u^(t) = 0. The control for 

each Huccessive subproblem :1s generated from the preceding 

subproblem. 

B. One-Sector Neoclassical Growth and 

Optimal Growth Models 

To introduce the computation of the optimal growth 

model first consider the growth model, with no objective 

functional, which characterizes economic growth in an aggre­

gate closed economy. Aggregate means that the economy pro­

duces a single homogeneous good, the output at time t is 

Y(t), using two inputs, labor L(t) and capital K(t). The 

adjective, closed, refers to the point that neither output 

nor input is imported or exported. All output from the 

productive process is either consumed or invested. If one 

represents consumption as C(t) and investment at I(t) then 

the income identity can be written as 

Y(t) = C(t) + I(t) , (3.3) 

which states that output (Gross National Product) can 

either be consumed or invested. 

Investment is used to increase the stock of capital 
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Table 3.1. Penalty function solution of problem T-1 
using a fixed penalty constant of p = 10.0 

Davidon Method Conjugate Gradient Method 
Iteration , , ^ . 
Number J n(x(5)) (g,g) J fi(x(5)) (g,g) 

1. 7 .8901 .0605 15.6090 7 .8901 .0657 15.6092 

2. 2 .1788 -.0089 15.6929 2 .1749 -.0126 14.5049 

3. 2 .1532 -.0674 7.2383 2 .1561 -.0702 5.3084 

4. 1 .9949 -.0656 1.7995 2 .1447 -.1158 7.9474 

5. 1 .9820& -.1048 3.2139 2 .1069 -.1599 12.4029 

6. 1 .9327 -.0520 4.2029 2 .0890 -.1252 4.6076 

7. 1 .6746 -.0585 .3276 2 .0804 -.0885 4.2695 

8. 1 .6722 -.0739 .8537 2 .0652 -.0357 10.3254 

9. 1 .6712 -.0571 .0700 2 .0182 -.0388 29.6590 

10. 1 .6707^ -.0562 .0020 1 .9164 -.0280 28.7799 

11. 1 .6701 -.0551 .2x10-4 1 .8810 -.0391 12.0685 

12. 1 .6701 -.0551 .2x10-5 1 .8649 -.0916 19.0845 

13. 1 .6701 -.0551 .2x10-5 1 .7856 -.1988 115.4830 

14. 1 .7404 -.1552 51.0380 

15. 1 .7277 -.1172 20.2462 

l6. 1 .7227 -.0889 9.8346 

^Result of a negative gradient direction of search. 
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Table 3-2. Results of Davldon and conjugate gradient 
algorithm applied to problem T-1 with vari­
able penalty constants, initial estimate 
Uq = 0.0 

Subproblem 
Number 

Penalty 
Constant 

J - 1 J2^(x(5)) n(x( 5) ) .Number of 
Steps Taken 

Davidon Method 

1 10.0 1.645 -.07 8 

2 50.0 1.645 -.07 3 

3 100.0 1.6863 -.005 3 

Conjugate Gradient Method 

1 10.0 2.0590 -.035 8 

2 50.0 1.9032 -.0030 3 

3 100.0 1.7059 -.0009 3 

4 200.0 1.7006 -.0002 2 

and to replace depreciated capital. Letting K(t) be the 

stock of capital at time t and assuming that the stock of 

capital depreciates at a rate g, then gross investment 

identity states that: 

I(t) = K(t) + 6K(t) . (3.4) 

Capital accumulation is that part of investment not used to 

replace depreciated capital. 

Output is determined by an aggregative production 
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function which summarizes the technically efficient possi­

bilities for production of output from capital and labor: 

Y(t) = P(K(t),L(t)) . (3.5) 

^ ° ^ ° ' ̂KK ^ ° » ^LL ^ ° 

lim F- = « , lim P„ = 0 
K^O ^ ^ 

lim P? = ™ ) lim FV = 0 (3.6) 
L^O L-»» 

Also if one assumed that the production function ex­

hibits constant returns to scale, then 

J = F(|,l) = f(|) = f(k) , (3.7) 

where the function f(.) gives output per worker as a func­

tion of capital per worker. Denote per worker quantities 

by lower case letters: 

y(t) = Y(t)/L(t) , k(t) = K(t)/L(t) 

c(t) = C(t)/L(t) , i(t) = I(t)/L(t) , 

by Equation 3.4 f'(k) > 0, f"(k) < 0, Vk 

lim f'(k) = «• J lim f'(k) = 0 
k->0 k^"» 

The labor force is assumed to grow at the given exponential 

rate r 

L = rL . (3.8) 
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The income Identity, the gi-our, Investment identity and 

the production function can be combined in per worker terms 

to form the fundamental differential equation of neoclas­

sical economic growth, 

f(k(t)) = c(t) + xk(t) + &(t) , (3.9) 

where X = r + 5. This differential equation states that 

output per worker f(k) is allocated among three uses: 

1. Consumption per worker c(t), 

2. Maintenance of the level of capital per worker 

Ak(t), 

3. Net increase in the level of capital per worker 

k(t ). 

Two values k and k designate levels of capital per 

worker at which c + k is a maximum and zero respectively. 

f(k) - Ak > f(k) - Xk Vk > 0 

f(k) - Ak = 0 . (3.10) 

Under the assumption given k and k exist and are unique (36). 

f'(k) = A = S + r . (3.11) 

The maximized level of consumption per worker c that can 

be maintained forever as an equilibrium level at k is given 

by, 

c = f(k) - Ak (3.12) 

where c is called golden-rule level of consumption per 
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worker. Condition 3.11 is called the golden rule of accumu­

lation. k is an equilibrium but not a stable equilibrium. 

Deviations to the right of Ê are eliminated but to the left 

are not (36). 

The problem of optimal economic growth is a dynamic 

control problem. In the one sector problem there is one 

state variable k(t), capital per worker and the equation of 

motion is the fundamental differential equation of neo­

classical economic growth. 

& = f(k) - Ak(t) - c(t) 

kftg) = kg k(tf) = k^ . (3.13) 

From the viewpoint of a central planner who has author­

ity over the entire economy, the control variable is con­

sumption per worker. The problem then is that of choosing 

a time path for consumption per worker over the planning 

horizon: 

{c(t) = c(t) I t^ £ t _< t^} (3.14) 

where t^, t^, f(.), X, k^, k^, are assumed given. Any time 

path satisfying the differential Equation 3.13 and the 

boundary condition for which, 

0_< c(t) •< f (k(t)) V teCt^jt^] , 

is feasible and the problem facing the central planner is 

that of choosing a feasible trajectory for consumption per 



www.manaraa.com

85 

worker that is optimal in achieving some economic objective. 

The economic objective of the central planner is as­

sumed to be based on standards of living as measured by 

consumption per worker. In particular it is assumed that 

the planner has a utility,function u(c(t)), giving utility 

at any time as a function of consumption per worker or a 

disutility function measuring the squared deviation from 

some desired time path of consumption. It is assumed that 

utilities at different times are independent and that util­

ities at different times can be added, after they have been 

suitably discounted to allow for the fact the near future 

generations are politically more important than far future 

generations. The rate of discount, p, assumed constant and 

nonnegative, is the marginal rate of transformation between 

present and future utility. 

The problem of neoclassical optimal growth for an ag­

gregate closed economy with a finite time horizon and posi­

tive discount rate and the assumptions on the production 

function previously mentioned is that of choosing a time 

path for consumption per worker, c(t), such that the follow­

ing equations are satisfied. 

^f _ . 
maximize J = j e u(c(t))dt , (3.15) 
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k = f(k) - Ak - c (3.16) 

kftg) = k^ , k(tf) = k^ 

0 ̂  c( t )  £  f ( k )  V  t e C t ^ j t ^ . ]  (3.17) 

c(t) piecewlse continuous, 

A = r + 6. 

The solution to this problem is an optimal path for con­

sumption per worker c*(t) and an optimal path for capital 

per worker k*(t) for all teCt^jt^.]. The solution depends 

upon two functions f(.) and u(.), on the nonnegative param­

eters, 1. rate of discount p, 2. depreciation rate plus 

growth rate of labor, A = 6 + r, 3. Initial stock of capi­

tal, 4. final stock of capital. 

The Hamiltonlan for the problem can be written. 

The term in the brackets is the sum of utility and the 

adjoint variable multiplied by the net Investment per worker, 

indicating an interpretation of n(t) as the inputed value 

(shadow price) of additional capital per worker, measured 

in terms of utility. The Hamiltonlan is the Inputed value 

discounted to the initial time zero. 

As an initial sequence of numerical experiments 

where the adjoint variable is n(t)e P 
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illustrating the control algorithms applied to solve eco­

nomic models numerically, one may formulate a model similar 

to the type studied by Goodwin (30). This particular model 

has linear production and capital accumulation functions, 

but the technique of obtaining the numerical solution is in 

no way restricted to linear cases. These functions were 

selected only as an initial illustration and will be fol­

lowed by studies of nonlinear relationships. This model 

differs from that of Goodwin in that it has a quadratic 

valuation function of the squared difference between per 

worker consumption c(t) and a known desired per worker con­

sumption c*(t) rather than a log function. The function 

c*(t) may be a derived function from optimizing on the sub-

unit level or it may arise from the subjective preferences 

of the planners or possibly a subset of the planners. 

Suppose for example that a group within the economic 

unit, say the businessmen, or a sectoral group want c*(t) 

to have a certain time path subject to the dynamic con­

straints of production and capital accumulation. They, 

however, would accept as a compromise a path close to their 

desired path in terms of the minimum of a squared deviation 

from c*(t). The objective is to choose c(t) as close to 

c*(t) as possible subject to the constraints of the model. 

The variables are defined as : 
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K(t) = aggregate quantity of the capital of the 

economic unit, 

C(t) = aggregate consumption of the unit, 

L(t) = labor force = ^ 

k(t) = K(t)/L(t), 

c(t) = C(t)/L(t), 

Y(t) = output of the economic unit, 

y(t) = Y(t)/L(t), 

[tojtf] = planning horizon, 

Kq = initial capital stock, 

Kf = final capital stock, 

B = output-capital ratio, 

p = penalty constant. 

Problem T-2 can then be formulated as follows: 

2 p 
minimize J = / (c(t) - c*(t)) dt + ^(K(t^) - K^) 

(3.19) 

subject to; K(t) = Y(t) - L^e^^cCt) , (3.20) 

Y(t) = BK(t) , (3.21) 

K(t^) = , K(t^) = . (3.22) 

The T-2 optimal solution may be computed directly from 

the above formulation or computed after the problem has been 

stated in per worker terms. For a representative parameter 
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specification let r = .01, B = .25 and = 10.00. Let 

the desired control c*(t) be a given as a subsistence level 

plus a linear time trend, c*(t) = 9.0 + .5t, and t^ = 0.0, 

t^ = 10.0. If one allows for a 5 percent per year rate of 

growth of output from the economic unit, then Y(10) = I65.O, 

where Y(0) = 100.0. 

This class of problems, linear dynamics, nonautonomous-

with quadratic objective functional and state variable ter­

minal constraints, represents one of the easier types of 

control problems to solve, yet it is important in my anal­

ysis since certain types of two and higher sector models, 

as will be considered later can be reduced to a problem like 

problem T-2 but with a time varying output-capital ratio. 

Both the conjugate gradient and the Davidon algorithms were 

used to solve the problem T-2. In terms of the output var­

iable Y(t) and the adjoint variable ir(t), the necessary 

conditions are: 

Y(t) = B(Y(t) - c(t) L^e^^) , Y(0) = 100.0 (3.23) 

n(t) = -BirCt), . it(10) = p(Y(lO) - I65.O) (3-24) 

g = = 2(c(t) - c*(t)) - iT(t) Lq Be^^ = 0 , (3.25) 

where 

H = (c-o*)2 + n(t)(Y(t) - c(t)eft)B . (3.26) 
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The penalty constant used was 3.0 and for both algorithms 

the initial control used was c^Ct) = 9.0. The stopping rule 

was a value of (g,g) less than 1.0 x 10"^. Values of the 

functional J, (g,g) and the number of forward and backward 

integrations per iteration are summarized in Table 3.3. 

The conjugate gradient method with this and other experiments 

was much more sensitive to the a-search direction parameter. 

It required 44 integrations of the state and adjoint dif­

ferential equations. Most of these were required to de­

termine the search direction parameter. 

The Davidon algorithm was much less sensitive to the 

search direction parameter. It converged after three steps 

and 13 integrations of the differential equations. Both 

methods gave essentially the same results for the trajec­

tories for problem T-2. Results for various time points 

are given in Table 3.4. The stepsize for the Runge-Kutta 

integration was h = .1. An approximation of the computa­

tion time for the Davidon Algorithm was l8 seconds per 

iteration. This includes CPU time and printing time. The 

time per iteration varies depending on how many linear 

searches must be completed in the iteration to compute an 

optimal search parameter. 

The trajectories for the time horizon of 20 and 30 

years respectively for problem T-2 are listed in Tables 

3.5 and 3.6. 
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Table 3.3. Convergence results for problem T-2 

Iteration Numbers vnn nt 
Number of J (g,g) _ igÊ n 

Integrations . 

Davidon Method 

1. 4 80.5861 263.433 -.0591 

2. 7 14.7394 28.205 -.0988 

3. 2 14 . 7 370 .000001 -.0584 

Conjugate Gradient Method 

1. 4 80.5861 263.432 -.0591 

2. 8 16.2077 16570.00 -.0103 

3. 3 14.7370 .0110 -.0592 

4. 9 14.7370 .00016 -.0544 

5. 5 14.7370 .0246 -.0572 

6. 2 14.7370 .0557 -.0566 

7. 3 14.7370 .0003 -.0582 

8. 10 14.7370 .000003 -.0584 

One notes that the savings rate S(t)/Y(t) for the dif­

ferent time horizon differs. In the 10 and 20 year plans 

the rate decreases monotonically, while in the 30 year plan 

it drops to approximately .15 in the year 10 and remains 

there until year 20 and then builds up to satisfy the 

terminal capital constraint. 



www.manaraa.com

Table 3•4. Optimal trajectories for problem T-2 with time 
horizon [OjlO] 

t Y(t) c(t) C(t) S(t) S(t)/Y(t) 

0. 0 100. 00000 6 .32990 63 .29900 36 .70100 0 .36701 

1. 2 110. 53299 7 .59810 76 .89827 33 .63472 0 .30430 

2. 0 117. 08499 8 .34780 85 .16438 31 .92061 0 .27263 

2. 8 123. 31299 9 .03640 92 .92993 30 .38306 0 .24639 

3. 6 129. 24599 9 .67470 100 .29329 28 .95270 0 .22401 

4. 4 134. 89699 10 .27130 107 .33322 27 .56377 0 .20433 

5. 2 140. 26900 10 .83350 114 .11751 26 .15149 0 .18644 

6. 0 145. 35199 11 .36750 120 .70422 24 .6477 0 .16957 
6. 8 150. 11800 11 .87800 127 .13794 22 .98006 0 .15308 

7. 6 154. 52800 12 .36920 133 .45900 21 .06900 0 .13634 

8. 4 158. 52399 12 .84450 139 .70041 18 .82358 0 .11874 

9. 2 162. 02800 13 .30660 145 .88889 16 .13911 0 .09961 

O
 

1—1 

0 164.. 94199 13 .75700 152 .03839 12 .90359 0 .07823 

Table 3.5. Optimal trajectories for problem T-2 with time 
horizon [0,20] 

t Y(t) c(t) c(t) s(t) S(t)/Y(t) 

0. 0 100. 00000 6 .0300 60 .29999 39 .70001 0 .39700 
2. 4 122. 17999 8 .5300 87 .37193 34 .80806 0 .28489 
4. 0 135. 73000 9 .86300 102 .65514 33 .07486 0 .24368 
5. 6 148. 75000 11 .02500 116 .60017 32" -.14983 0 .21613 
7. 2 161. 51999 12 .07000 129 .71091 31 .80908 0 .19694 
8. 8 174. 23999 13 .03900 142 .38425 31 .85574 0 .18283 
10. 4 187. 39999 13 .95000 154 .78920 32 .61079 0 .17402 
12. 0 200. 03999 14 .83000 167 .20775 32 .83224 0 .16413 

13. 6 213. 31999 15 .68500 179 .70010 33 .61989 0 .15760 

15. 2 226. 95999 16 .51999 192 .31906 34 .64093 0 .15263 
16. 8 241. 04999 17 .34999 205 .23940 35 .81059 0 .14856 
18. 4 255. 67999 18 .16199 218 .30997 37 .37003 0 .14616 
20. 0 271. 00000 18 .97299 231 .73671 39 .26329 0 .14488 
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Table 3.6. Optimal trajectories for problem T-2 with time 
horizon [0,30] 

t Y(t) 2(t) c(t) S(t) S(t)/Y(t) 

0. 0 100 .00000 6 .02600 60.25998 39.74002 0.39740 

3. 6 132 .45999 9 .54600 98.95912 33.50087 0.25291 

6. 0 152 .06999 11 .29500 119.93439 32.13560 0.21132 

8. 4 171 .26999 12 .80300 139.24905 32.02094 0.18696 
10. 8 190 .64999 14 .17700 157.93857 32.71143 0.17158 

13. 2 210 .65999 . 15 .47400 176,57512 34.08487 0.16180 

15. 6 231 .68999 16 .72899 195.53278 36.15721 0.15606 
18. 0 254 .25000 17 .95999 215.02007 39.22993 0.15430 

20. 4 279 .08984 19 .17699 235.16705 43.92279 0.15738 
22. 8 307 .51978 20 .38699 256.07788 51.44189 0.16728 

25. 2 341 .82178 21 .59200 277.80176 64.02002 0.18729 
27. 6 386 .14380 22.79500 300.40308 85.74072 0.22204 

30. 0 447 .98584 23 .99699 323.92529 124.06055 0.27693 

Over the ten year time horizon one can obtain a re­

gression of c(t) against Y(t) to determine the control var­

iable as a function of the state variable. A linear fit of 

these data gives the relationship c(t) = -4.65605 + 

.110624 Y(t), with a coefficient of multiple determination, 

value, of .99927 and a residual variance of .0037328. 

Letting t^^^ - t^ = .4, a lagged relationship between 

Yt-i 3.nd c^ for the interval [0,10] is given by, 

= —3.812296 + .1065648 ^ 

with an value of .999425 and a residual variance of 
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.00236. 

For the titrenty year horizon a linear relationship of 

the data is given by the equation c(t) = -.241 + .0736 Y(t) 

relating consumption per worker and aggregate output with 

an value of .9865. For the thirty year horizon the above 

data relationship appears quadratic c(t) = -4.1781 

+ .1201 Y(t) - .000129Y2(t) with an value of .99879. 

This would imply that, using model T-2, a linear rule giving 

the consumption per worker as a function of the output would 

only be valid within a 20 year horizon. 

It appears that most practical planning situations 

would be within a small time horizon, since one may not be 

able to obtain deterministic relationships over a long hor­

izon. For the T-2 problem c(t) approaches c*(t) in approxi­

mately 15 years, hence the transient terms are necessary in 

this realistic optimal short range planning. 

Control problem T-2 can be resolved analytically. 

From the necessary conditions one determines c(t) and Y(t) 

as, 

c(t) = 9.0 + .5t + (1.25)(A)e"'24t (3.27) 

Y(t) = Be'25t + 5.208te"01t + ii5.45e*°^^ 

+ (6.51)(A)e-'23t (3.28) 

where A and B are constants to be determined by the boundary 
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conditions. For the time horizon [0,10] and the given 

parameters of the model, the constants have the following 

values, A = -2.13696 and B = -1.5389. The value of J = 

14.7429 and J - ̂ (y(l0.0 - 165.)^ = 14.7375. This com­

pared with the computed value of 14.7370. This problem 

T-2 was a good test of the computer code and also it indi­

cated the ease with which different parameter settings can 

be made and the solution obtained by the numerical algo­

rithms used. This type of problem T-2 will be utilized 

again in a suboptimization procedure of a two-sector model. 

The suboptimization procedure will involve a time varying 

output-capital ratio and will be discussed in Section C. 

As a second sequence of numerical experiments, consider 

the following model. This model was studied by Chakravarty 

(16) and he considered a nonlinear welfare function and a 

nonlinear production function. He showed that for a pro­

duction function of the form, Y = aK® where Y is the output, 

K is the capital stock, and a and B are parameters that if 

B = 1/2 it was possible to obtain a closed form solution for 

the time path of capital stock. The B = 1/2 case was the 

only nonlinear problem he discussed since he implied that 

it was not possible to obtain closed form solutions for any 

other cases. This model does not express the variables in 

per worker terms. A modification of this model where per 

worker variables are considered will be treated later. 
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The control problem T-3 Is formulated as follows: 

^f 
maximize J = f e^P^ 1 (c(t))^~^dt (3-29) 

•' J- 1—n 
o 

subject to 

K(t) = eZtYK(t)B(^2eft)l-B _ c(t) - gKft) , (3-30 

K(0) = Kq and K(t^) = (3-31) 

Where the variables are: 

J = an index of performance, 

p = time rate of welfare discount, 

C(t) = consumption at time t, 

n = elasticity of marginal utility with respect to 

consumption, 

K(t) = capital accumulation, 

K(t) = stock of capital, 

S = rate of capital depreciation, 

K(0) = is the initial stock of capital, 

K(t^) = is the terminal stock of capital, 

z = rate of neutral technical progress, 

Y = efficiency parameter, 

B = elasticity of output with respect to capital, 

= initial labor force, 

r = rate of growth of the labor force, 

[0,t^] = fixed time horizon. 
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The form of the production function used is 

y(t) = P(K(t)) = e2^Y(K(t))®(L^e^^)^""® , 

= aeSt(K(t))B , (3.32) 

where 

a = yLq " and g = r(l-B) + z . 

The utility function 

U ( C ( t ) ) = C ( t ) ) where n ̂  0 and n 7^ 1 

(3.33) 

has the following properties: 

U'(C(t)) >_ 0 C 2 0 

U"(C(t)) 1 0 C ^ 0 

lim U(C(t)) - C(t) 
n-»-0 

An attempt has been made to gain insight into how 

nonlinear specification of these functions affects the time 

paths of the optimal solution trajectories. Penalty func­

tions are used to handle terminal constraints on the state 

variables. The parameter values for the model are given 

In Table 3.7-

Selected values of the optimal trajectories for prob­

lem T-3 are given in Table 3-8. 

The value of the functional was 98.182 and a fixed 
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Table 3.7- Parameter values .for Model T-3 

6 = .05 p — . 03 n — • 9 r = .025 

Kq = 15.0 z = .01 Yq = 4.27 Lo = 15.0 

Y = .285 Y^ = F(Kf) = 7.04% 

Complementary values of a and B-

B a 
.60 ' .8419 
.75 .5601 

.80 .4900 

1.00 .2850 

^Thls allows a 5% growth per year in output over the 
planning horizon 

Table 3.8. Optimal trajectories for problem T-3 with 
B = .6, a = .8419 and time horizon of 10 

Time 
t 

Output 
Y(t) 

Capital 
K(t) 

Consumption 
c(t) 

Adjoint 
Variable 

n(t ) 

Savin] 
Rate 

0.0 4.275 15.000 2.255 .479 .472 
.4 4.395 15.503 2.369 .457 .461 
1.2 4.636 16.497 2.575 .415 .445 
2.0 4.878 17.485 2.769 .377 .432 
2.8 5.122 18.470 2.973 .344 .419 
3.6 5.367 19.440 3.200 .314 .403 
4.4 5.610 20.374 3.455 .286 .384 
5.2 5.845 21.248 3.737 .260 .361 
6.0 6.071 22.039 4.043 .238 .334 
6 . 8  6.283 22.722 4.369 .217 .304 
7.6 6.477 23.277 4.709 .197 .273 
8,4 6.651 23.683 5.060 .179 .239 
9.2 6.798 23.921 5.419 .163 .202 
10.0 6.917 23.970 5.783 .148 .164 
J = 98.182 
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penalty constant of 5.0 was used with an Initial control 

variable of C^(t) = 1.0. In all the numerical experimenta­

tion the Davidon algorithm was much less sensitive to both 

the initial control estimate and the search direction param­

eter. In every case it converged with less iterations than 

the conjugate gradient method. The restart feature of the 

Davidon method proved to be an asset rather than a practical 

necessity. Restarting the search direction in a negative 

gradient direction every 4 to 6 iterations proved completely 

adequate in my computational experience. 

The shadow price of additional capital measured in 

terms of utility is seen to start out at .479 and de­

creased to .148 as the terminal constraint on capital is 

satisfied. The savings rate decreases from .472 to .164 

over the 10 year horizon. 

The elasticity of output with respect to capital, B, 

is now varied while holding all other parameters constant. 

In varying B the parameter "a" is chosen in a complementary 

manner to maintain a constant initial level of output Y(t) 

with the different specifications of the production func­

tion. The optimal saving rates at various time points are 

computed for different B values and presented in Table 3-9. 

The behavior of the savings rate agrees with the ex­

pectation that when attempting to hit a certain target rate 

of growth of output (in the example of problem T-3 5^ per 
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Table 3.9. Problem T-3 optimal savings rate with various 
values of B and a and planning horizon of 10 
years . , 

t 
time 

B=. 6 
a=.84l9 

B=.75 
a=.5609 

B=.8 
a=.4900 

B=1.0 
a=.285 

0.0 .472 .548 .609 .739 
.4 .461 .541 .578 .664 

1.2 .445 .518 .553 .637 
2.0 .432 .494 .531 . 626 
2.8 .419 .467 .513 .589 

3.6 .404 .453 .477 .523 

4.4 .384 .424 .435 .482 

5.2 .361 .389 .394 .421 

6.0 .334 .344 .344 .329 

6.8 .305 .287 .279 .220 

7.6 .273 .217 .197 .100 

8.4 .239 .135 .097 .033 
9.2 .202 .038 .002 .002 
10.0 .164 .000 .000 .000 

year), an economic unit with more productive capital should 

save more in the earlier years of the planning horizon. This 

example also illustrates the need for obtaining good esti­

mates in the production function parameters as the optimal 

trajectories change with respect to different values of the 

parameter B. 

Table 3-10 shows changes in the savings rate under vari­

ations in n. All other parameters are as given in Table 3.7 . 

with B=.6 and a=.84l9. The optimal savings rate for various 
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Table; 3.1U. iiav.lnc;:*. rate and the Tunct:!ona.l va lue t'oi' li.i f-
['(^rent vaJuei; of n Cor prob I em T-3 (n=.6 atid 
a=.84l9) 

I n=. P n=. 6 n=. 8 n=. 9 

0.0 .543 .573 .493 .472 

1.2 .482 .540 .474 .444 

2.4 .434 .499 .445 .426 

3.6 .387 .456 .418 .404 

4.8 .347 .406 .384 .373 
6.0 .309 .337 .338 .334 
7.2 .268 .252 .280 .289 
8.4 .233 .153 .213 .239 
9.6 .192 .035 .134 .184 

o
 
o
 

I—1 

.178 .000. .105 .164 

J=30.78 J=36.27 J=55.84 J=98.l8 

time points are summarized in Table 3.10. 

Changes in the values of n appear to have relatively 

less effect on the savings rate than do changes in B. 

Using the notation of the control problem defined in 

Equations 2.1 and 2.2, consider now the change in the 

Hamiltonian over time. Since in general H is a function of 

X, u, X and t, one may compute as follows, where in a one 

Hector model all functions are scalar functions. 
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Along the optimal trajectory the first term vanishes be­

cause of the adjoint differential equations. The second 

term vanishes because either the partial derivative -^ = 0 

for an Interior solution or û = 0 for a boundary solution. 

Thus, along the optimal trajectory ̂  If the problem 
dt at 

is autonomous in that both L and f show no explicit de­

pendence on time, then ̂  = 0 and along the optimal tra­

jectory the value of the Hamlltonian is constant over time. 

Problem T-3 is not an autonomous problem, since the 

Hamlltonian function depends explicitly on time. To see 

how the Hamlltonian function behaves for the T-3 problem, 

for selected time points its value was computed for certain 

feasible values of the control and state variables and the 

optimal values. These are presented in Table 3.11 together 

with (g,g) where, 

10 m 

Next a series of computations with different growth 

rates on output Y(t) were considered. The results of this 

experimentation are given for selected time points.in 

Table 3.12 and Table 3.13. The values of the parameters 

are as given in Table 3.7 with Y^, final output^ computed 

with 5%, 6%, 7% and 8% growth rate per year. 

As seen by Table 3.12 and 3.13, the time paths of con­

sumption and saving rate vary with respect to changes in the 
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Table 3.11. Valuer of the Hamiltonlan for selected time 
pointr, for problem T-3 with B=.75 and a=.5609 

t • 4th iteration . 8th iteration 12th Iteration 

0 12.21 11.39 11.57 
1.0 11.87 11.12 11.29 

2.0 11.52 10.88 11.02 

3.0 11.14 10.63 10.74 

4.0 10.76 10.37 10.47 

5.0 10.39 10.12 10.20 

6.0 10.04 9.89 9.94 

7.0 9.70 9.65 9.67 

8.0 9.39 9.40 9.40 

9.0 9.09 9.16 9.15 
.0.0 8.81 8.92 8.89 

(g,g)=.368 (g,g)=.042 (g,g)=.5xlO"^ 

Table 3.12. Time paths of consumption where : final target 
output is computed using different growth 
rates per year 

t C(t) 
5% 

c(t) 
6% 

C(t) 
1% 

C(t) 
8% 

0.0 2.25 2.12 1 .96 1.62 
1.2 2.57 2.37 2 .18 1.90 
2.0 2.76 2.56 2 .34 2.05 
3.2 3.08 2.88 2 .63 2.27 
4.4 3.46 3.19 2 .95 2.52 
5.6 3.90 3.55 3 .26 2.77 
7.2 4.55 4.12 3 .70 3.11 
8.8 5.23 4.79 4 .24 3.52 
10.0 5.75 5.32 4 .71 3.91 

J=98.l8 J=97.37 J= 96 .44 J=94.90 
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Table 3.13. Time paths of output Y(t) and savings rate 
. s(t) for target final output determined 
from different, .growth .rates 

t Y(t) 
•5 

s(t) 
^ 

Y(t) • 
6% 

s(t) T(t) 
7 % 

s(t) T(t) 
8 

• sCt: 
. 

0.0 4.27 .48 4.27 .50 4.27 .54 4.27 .62 

1.2 4.64 .45 4.67 .49 4.71 .54 4.77 .60 

2.0 4.88 .43 4.94 .47 5.02 .53 5.12 . 60 

3.2 5.25 .41 5.36 .46 5.50 .52 5.68 .60 

4.4 5.61 .38 5.79 .45 5.99 .51 6.27 .59 
5.6 5.96 .34 6.23 .43 6.51 .49 6.90 .59 

7.2 6.38 .29 6.81 .39 7.23 .49 7.83 . 60 
8.8 6.72 .22 7.37 .35 7.99 .47 8.85 .60 

10.0 6.91 . l6 7.77 .31 8.59 .45 9.67 .60 

growth rate of the final target output Y^. The saving rate 

in Table 3.13 for an 8% per year rate of growth is seen to 

be almost constant at .60. Certainly if an economic unit 

can survive on the low time path of consumption as in the 8% 

per year growth rate their potential for future consumption 

would increase. 

As seen in Table 3.14 the more that capital is needed 

to attain the various growth rates on the target final out­

put, the larger is the value of the adjoint variable value 

or the shadow price of capital. 

Problem T-3 can be analyzed in per worker terms by mak­

ing the following changes. The new variables ai'e defined as: 
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Table 3.14. Time path of adjoint variables with different 
final target output growth rates 

t ïï(t) ir(t) Tr(t) n(t) 
5% 6% 7% 8% 

0 .4781 .5112 .5505 .6251 

1.2 .4l4l .4431 .4773 .5425 

2.0 .3768 .4036 .4352 .4953 

3.2 .3276 .3517 .3802 .4343 
4.4 .2852 .3073 .3335 .3827 
5-6 .2484 .2690 .2933 .3388 

7.2 .2065 .2257 .2482 .2899 

8.8 .1710 .1895 .2108 .2498 
10.0 .1478 .1661 .1869 .2243 

c(t) = C(t)/L(t) = consumption per worker, 

k(t) = K(t)/L(t) = capital per worker, 

i(t) = I(t)/L(t) = investment per worker. 

Using the utility function where argument is per worker con­

sumption, the performance functional with the penalty term 

becomes, 

maximize J = / e"^^ ^~(c(t))^~"dt - ̂ (k(t^) - kf)^ . 

o 

Substituting K = kL + kL into the Equation 3-30 and 

dividing by L, the per worker capital accumulation differ­

ential equation is derived. 
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k = 2 _ (5+r)k (3.34 ) 

0  <  B  £  1  

= LTÔT " "o ^"1 k(tf) = LTÇT = kf . 

If the adjoint variable is defined as n = qe then 

the Hamiltonlan function can be written as, 

H(k,q,c,t) = + q(e^^Yk® - c - (<5+r)k)] 
1—n 

(3.35) 

The adjoint differential equation is: 

|_(qe-pt) = - |S , (3.36) 

implying that 

q = q[(g + r + p) - yBe^^k®"^] • (3.37) 

The first order condition for an interior minimum, 

3 H  
= 0 implies that q = c~" . (3*38) 

Differentiating 3.38 with respect to time and substi­

tuting into 3.37} the two differential equations that the 

optimal trajectories {c(t),k(t)} must satisfy are derived, 

-n I = [(s+r+p) - eftyBkB-l] (3.39) 

k = - c - (ô+r)k 
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Suppose we allow z = 0, assuming no neutral technical 

progress, t|.-^~ , and temporarily ignore the condition of 

a given initial stock of capital per worker. Then one pos­

sible solution to Equation 3.39 is that for which neither 

consumption per worker nor capital per worker change over 

time. 

c = k = 0 

In order that consumption per worker be constant it is 

necessary from Equation 3.39 that k = k,, where • 

YBk,® ^ = 6 + r + p ; (3.40) 

and capital per worker will remain at k, if consumption per 

worker is 

c, = yki® - (6 + r)k, . (3.41) 

The equilibrium k(t) = k, and c(t) = c,, thus satisfies 

all the necessary conditions except the initial boundary 

conditions. This equilibrium {k,,c,} is the balanced growth 

path, since along it capital per worker and consumption per 

worker are constant. Hence total consumption 

C(t) = c(t)L(t), total capital K(t) = k(t)L(t) and total 

output Y(t) = f(k)L(t) = yk^L(t) all grow at the same rate, 

namely the rate of growth of the labor force. The balanced 

growth path is called the modified golden rule growth path, 

since it modifies the golden rule to allow for nonzero 
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discount rate. 

lim k, = k. (3.42) 
p->0 

If one assigns the parameter values B = .6, 6 = .05, 

r = .025, Y = .285, p = .03 as in Table 3.7 and z = 0.0, 

then the balanced growth paths may be computed from Equa­

tions 3.40 and 3.41 as follows, 

(.285)(.6)k,"*^ = . 0 5  +  .025 +  . 0 3  

k, = 3.385 

c, = (.285)(3.385)"G - ( . 0 7 5 )(3.385) 

c, = .338 

Now consider the optimal path when explicit account is 

taken of the initial condition on capital per worker and 

z = 0. 

From the differential Equations 3-39 

c = 0 if II 
1—1 1 PQ >
-

6 + r + p 

c > 0 if yBk®"^ > 6 + r + p 

c < 0 if YBk®"^ < Ô + r + P 

c = 0 if k = k, 

> 0 if k < k, 

<0 if k > k, 

and 
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k = 0 if c = yk® - (g+r)k 

> 0 if c < yk® - (6+r)k 

<0 if c > yk® - (6+r)k 

These relationships are indicated in Figure 3.1. The 

two curves c and k divide the figure into four regions, and 

the behavior of c and k is indicated in each region by a 

pair of arrows. The two curves intersect at (k,,c,) which 

is the balanced growth path. 

c 

c = 0 

(k,(t),c,(t)) 

< ^ Y 

B 
c 

0 

(6+r)k 

k 

k, k 

Figure 3.1. Phase diagram for problem T-3 where z = 0 



www.manaraa.com

110 

The local stability of the solutions to the autonomous 

(since z is assumed to be zero) differential Equations 3.39 

can be analyzed from the characteristic roots of the matrix 

of coefficients obtained by a linear expansion of these 

equations about the equilibrium point (k,,c,). 

Expanding about the equilibrium point (k,,c,) one ob­

tains: 

c~ - ^[(ô+r+p) - ](c-c,) 

+ f±(Y)(B)(B-l)k,B-2(k_k,) . (3.43) 

By Equation 3.40 the first term vanishes and, 

Ô: •4^(-285)(.6)(-.H)(3.3B5)"^-*Ck-3.385) 

c = -.00465(k-3.385) 

k ~ -(c-c,) + [yBk^ ̂  - (6+r)](k-k,) 

k = -(c-c,) + p(k-k,) 

k = -(c-.338) + (.03)(k-3.385) . 

The behavior of the system around (k,,c,) is determined by 

the characteristic values of the matrix A, where A is given 

by: 

(0 -.00465 

-1.00 .03 

The characteristic values are determined as x. = .0848 
1 
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and Xg = -.0548 and two characteristics vectors are. 

\1.0 

/-.0548 +.0848\ 
h 

2 1 . 0  I  

Since these characteristics roots are real and opposite in 

sign, the equilibrium point of balanced growth at (k,,C|) 

is a saddle point, the stable branch of which is labeled 

(k,(t),c,(t)) in Figure 3.1. This stable branch consists 

of all points that eventually reach the balanced growth 

equilibrium. 

The path of optimal economic growth must lie along the 

stable branch, where given any initial level of capital per 

worker k , the unique optimal initial consumption per 

worker is the point on the stable branch associated with 

k^. The optimal growth path is a unique segment of the 

stable branch, as any other path would eventually fail to 

satisfy the necessary conditions for an optimum involving 

either inflexible points in the upper left of Figure 3.1 

or inferior points in the lower right of the quadrant. The 

stable branch is monotonie increasing, so if k^ < k,, then 

both c,(t) and k,(t) increase over time, moving up the 

stable branch to the balanced-growth equilibrium while if 

k > k| the reverse is true. With a finite horizon there 

o 

o » 

is an additional condition. 

e ^ q(t^)(k(t^) - k^) = 0 (3.44) 
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It has been shown (6l) that the optimal path satisfies 

the "turnpike property". As the time horizon [0,t ] becomes 
I 

sufficiently long, the optimal time paths for capital per 

worker and for consumption per worker spend an arbitrarily 

large portion of the time close to the balanced growth 

equilibrium. For example starting from its initial level 

capital per worker moves toward k, and stays near there, 

eventually moving away from k, to satisfy the terminal re­

quirement k(t^) = kp. 

With the parameter values given in Table 3.7 and 

B = .6, a = .8419, and the growth rate of labor r = .025 

per year, it appears from my computations that the ten year 

horizon does not allow the turnpike property to manifest 

itself for problem T-3. Consumption per worker at t = 0 

is c(0) = .146 and at t = 10.0 has Increased to c(10) = .27, 

where the equilibrium point c, = .338 has not been reached. 

Likewise with k(t), k(0) = 1.0 and k(10) = 1.2 where k,, 

the equilibrium point is k, = 3.385. It would appear that 

a time horizon of approximately 20 years would be needed to 

exhibit the turnpike property of problem T-3. The balanced 

growth solution is given by, 

C(t) = (.338)e'°25t(i5.o) , 

K(t) = (3.385)(15.0)e'°25t 

For the ten year horizon the values k(t) and c(t) are 
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Increasing along the stable branch of Figure 3.1. They 

start at c(0) = .146 and k(0) = 1.0 and within the ten 

year horizon do not attain the equilibrium value, k, = 

3.385 and c, = . 3 3 8 .  

Problem T-3 will be considered again in a suboptimiza-

tion procedure with a two-sector model that is treated in 

Section C. 

Jorgenson ( 3 8 ) ,  Sengupta (64) and Goodwin (30) con­

sidered the idea of a dual economy framework. The economic 

system may be divided into two sectors, the advanced (manu­

facturing) and the backward (agricultural) such that the 

production in the former is a function of labor and capital 

with constant returns to scale, whereas in the latter sec­

tor, production is a function of land and labor with dimin­

ishing returns to scale. 

The Jorgenson model of a dual economy in its develop­

ing phase may be summarized as follows: 

a. The development of the advanced sector, also called 

manufacturing, is possible only if an agricultural surplus 

eventually emerges in the backward, also called agricultural 

sector. If no such surplus comes into existence, the en­

tire economy remains stagnant, producing only food and other 

products of the backward economy. 

b. When the output of the agricultural sector attains 

and then exceeds the minimum subsistence level of food 
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consumption necessary for population to grow at its maxi­

mum rate, an agricultural surplus emerges. As a result, 

total population (i.e. labor) P(t) = P(0)e^^ grows at the 

maximum rate of net reproduction and hence, a part of the 

labor force may be freed from the agricultural sector to 

produce goods in the advanced sector. 

c. It is assumed that all income arising in the 

agricultural sector either as wages to labor or rent to 

landowners are entirely consumed while the output of the 

advanced sector (X(t)) is partly consumed (X (t)) (both 
c 

directly and indirectly) through trading for food produced 

in the agricultural sector and partly invested (I(t)). 

Capital accumulation K which is possible only in the ad­

vanced sector, is defined as investment (I(t)) less depre­

ciation 5K(t) where 5 is the constant rate of depreciation. 

X(t) = X (t) + I(t) = X (t) + K(t) + gK(t) 
c c 

d. The production functions for the agricultural Y(t) 

and manufacturing X(t) sectors are assumed to be of the 

Cobb-Douglas form with neutral technical changes. 

Y(t) = ^ 

X(t) = , 

where a, B, X and a are known estimated from the sectors 

in question. Total population P(t) is made up of 
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agricultural labor A(t) and manufacturing labor M(t). 

Given the agricultural production function, the re­

quired rate of growth in the agricultural labor force 

necessary to maintain the growth of the agriculture surplus 

is computed in the model as: 

E-a\t (St' 
A(t) = P(0)e 

Since the total population is growing at the maximum rate, 

the size of the manufacturing labor force is given by: 

(IzOxt 
M(t) = P(t) - A(t) = P(0)[e=t _ e ] 

One may obtain an expression for the aggregate con­

sumption C(t) as, 

C(t) = Y(t) + X (t) . 
c 

By using the production functions in the two sectors 

and substituting into the previous equation, we obtain the 

differential equation 

1-B 
C(t) = e*t[p(o)e ] 

/£-«. 1-0 
+ eA^K°[P(0)(eCt - e 1-B )] - K(t) - 6K 

0(t) = 

—K(t) — 6K . 



www.manaraa.com

116 

Now we may formulate an index of performance either with a 

utility function of the argument C(t) or a disutility func­

tion describing deviation from a known desired time path. 

For this case let us consider the former: 

^f 
minimize J = / L(C(t))e ^^dt + £(K(t^) -

where K(0) = and K(t^) = represent boundary condi­

tion for the problem where K may be computed from a given 
X 

target growth rate. Sengupta (64) noted that this problem 

was too complicated and nonlinear to solve explicitly ana­

lytically. He analyzed the problem in various cases using 

linear approximations to the actual problem. 

The previous formulation is isomorphic to problem T-3 

and the computational procedure to numerically solve it is 

identical to that used in solving T-3. I make no computa­

tions, but merely point out the similarity of the two 

problems. 

C. Two-Sector Optimal Growth Models 

To begin the study of the control problem applied to 

two-sector models, consider the model of development and 

planning for India which was formalized by Mahalanobis (48). 

It is studied as an indication of how one might proceed 

with other more complex models. The model distinguishes 

two sectors, one producing investment goods and the other 
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producing consumption goods on the assumption of a closed 

economy. The increase of real national output depends on 

the allocation of investment to each sector. The main pol­

icy problem is how to determine the optimal allocation of 

investment between the two sectors under alternative plan­

ning horizon and various sets of values of the output-

capital coefficients. 

The two sector model may be specified in continuous 

form as follows: 

i(t) = X^B^I(t) , ( 3 . 4 5 )  

C(t) = A^B^I(t) , (3.46) 

'  ( 3 . 4 7 )  

Y(t) = C(t) + l(t) , (3.48) 

1(0) = Iq , 0(0) = . (3.49) 

The variables are defined as, 

I(t) = Investment goods at time t, 

C(t) = Consumption at time t, 

Y(t) = Income at time t, 

A= Proportion of total investment allocated to pro­

duce investment goods, 

= Proportion of total investment allocated to pro­

duce consumption goods, 

= Output-capital ratio for investment goods. 
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= Output-capital ratio for consumption goods. 

As indicated, the policy problem which this model is to 

help solve is that of providing a means to compute the pro­

portion of total investment which should be allocated to 

produce investment goods, in order to maximize aggregate 

Income Y(t^), given the planning horizon [0,t^]. 

The output-capital ratios are assumed known and based 

on production situations in each sector and given by 

= .2 and B^ = .3 (27). From Equations 3.45 to 3.^9 

I(t), C(t) and Y(t) can be determined in terms of and 

t. Once the planning horizon [0,t^] has been specified the 

necessary condition for a maximum of Y(A^;t^), 

^ Y(A.;t^) = 0 , (3.50) 

allows one to compute the value which gives the maximum 

value of Y(x^;t^). The meaning of is the proportion of 

total allocatable investment to be made in investment goods 

to maximize income Y(x^;t^) in t^ years. In the above form­

ulation the implicit welfare function includes only one 

element, the maximization of Y(x^;t^). 

The preceding two-sector model can be linked to control 

problem T-2 or T-3 in the following manner. Add Equations 

3.45 to 3.46 and use the time derivative of Equation 3-48 

and Equation 3.47 to obtain the following differential 

equation. 



www.manaraa.com

119 

Y(t) = [x.B^ +(1 - Ai)B^]I(t) (3.51) 

where 0 ^ i. Let B(X^)= + (1 - and from 

Equation 3.48, one obtains the differential equation, 

Y(t) = B(x^)(Y(t) - C(t)) . (3.52) 

Define c(t) = C(t)|L^e^^ as consumption per worker where 

is the initial labor force and r is the growth rate of 

labor. Form the integral functional, 

^f 2 
minimize J = / (c(t) - c*(t)) dt , (3-53) 

o 

where c*(t) is a known desired consumption per worker tra­

jectory over [0,t^]. Then one may specify the boundary 

conditions, where is a terminal target output as, 

Y(0) = Y^ , YCtf) = Y^ . (3.54) 

This extension of the Mahalanobls model has two con­

trol variables c(t) and X.(t) and one state variable Y(t). 
1 

Classify this model as problem T-4. 

^f 2 
minimize J = J (c(t) - c*(t)) dt (3.55) 

o 

subject to: 

Y(t) = B(X^)(Y(t) - c(t)L^e^^) 

Y(0) = Y and Y(t^) = Y^ 0 < X. < 1 . 
o f f — 1 — 
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One notes that there are two parts to the economic . 

meaning of the optimization of this two-sector problem. 

1. To determine the optimal allocation between sectors, 

Aj^(t)j over the planning horizon. 

2. To determine the optimal allocation between con­

sumption and production subject to the desired 

consumption and the dynamic constraints and bound­

ary conditions of the system. 

One approach to consider this kind of problem is by a 

decomposition procedure. Rather than treat A .(t) as a con-
1 

trol variable in problem T-4, one may choose a value for x ̂  

to optimize Y(t) as in the original Mahalanobis problem or 

by any other subunit optimization procedure where A .(t) is 
i 

the decision variable. One then obtains various values of 

X over subintervals of the planning horizon. That is to 

say X is constant over subintervals of [0,t^] such that. 

Z 
2 

Z t E T 
n n 

where form a partition of [0,t^] and 

^l'^2'***^n constants such that 
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0 _< Zj _< 1 for j=ij2,...,n. 

Once the Z. have been chosen, B(X ) is completely determined. 
J i 

B(X^) = + (l-Zj)Bg for t E TJ. This interpretation 

gives a step function time varying output-capital ratio, 

B(X^), and with these modifications the problem T-4 is a 

slight extension of problem T-2 as treated in Section B. 

If the performance functional. Equation 3.53, is given 

in terms of utility, 

maximize J = / L(c(t) ,Y(t) )it . (3.56) 
o 

and B(A^) is computed as indicated previously, then the 

two-sector problem reduces to the T-3 problem as treated 

in Section B. Classify this two-sector utility problem 

as T-5. 

The optimal solution of this modified two-sector model 

T-4 may not be identical to the solution of the T-4 problem 

where A^(t) is treated as a control variable. However 

trade offs may be made between the subunit and overall ob­

jective functions such that a reasonable approximation is 

attained. Here the modified control problem solution is 

optimal consistent with the subunit decisions concerning 

If there is a central planning agency at the national 

level for a country it may not be the most efficient for the 
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agency to make all detailed decisions concerning all the 

controls. The central agency may have a limited knowledge 

abput the detailed parameters at the subunlt (regional or 
. >  V  ' -

sectorial) levels, particularly when some of the parameters 

are subject to dynamic shifts. 

• One could however, visualize two alternative ways of 

synthesizing subunlts into a single national policy model, 

assuming each subunlt appropriately defined can be regarded 

as a decision-making unit. One is to specify a team de­

cision for national policy problems so that the optimizing 

considerations of all the subunits are Incorporated in the 

one national model. An example for a simple case is the 

two-sector model T-4 where all the subunlt decisions are 

made within the model, the optimal time paths for X^^Ct), 

Y(t) and c(t). Alternatively, one can specify a suboptlml-

zatlon or multiphase decision model at the national level, 

where the various subunits form different phases. The 

central decision making agency Itself may form one phase 

in the sequential scheme of the decision making. 

If each subunlt is required to fulfill a part of the 

national goal and also a subunlt goal which is specific to 

the unit itself, care should be taken to ensure that the 

controls chosen by different subunlt policy makers are com­

patible among themselves and in relation to the national 

targets set up. In the general case the team decision 
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problem becomes one of a nonlinear time-staged programming 

problem or a control problem with large dimensions. In 

view of the data requirements it appears that the formula­

tion of a detailed multisubunit growth model is a very dif­

ficult task in most countries (27). Also the cost and the 

numerical difficulties involved in the computation increases 

rapidly as the number of subunits increase. The computa­

tional difficulty of solving control problems'seems to in­

crease rapidly with the number of control variables. 

Chenery (l8) and Sengupta (64) suggest as an alternative 

the procedure as mentioned before of a suboptimization de­

cision problem in a multiunit framework. To emphasize the 

idea of sequential planning by stages, one may start in the 

first stage with a dynamic macroeconomic decision problem 

at the national level, an aggregate growth model with a 

long planning horizon of ten to fifteen years. 

At the next stage one considers problems of optimal 

decision making at subunit (possibly sectorial) levels. An 

objective function different from that in the first stage 

could be selected at this stage with a short planning hori­

zon of three to five years. Any deviation of the observed 

solution from the planned targets at the end of each short 

planning period in the second stage could be utilized to 

revise the initial first-stage decision and perhaps update 

the general model. This revised first-stage decision could 
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then be used in the second-stage model to get an .improved 

decision for the next time horizon of the subunit. This 

multistage sùboptimization procedure could be extended into 

additional units. Problem T-4 simply involves subunit de­

cisions on X^(t), the optimal allocation as between the two 

sectors and c*(t), the desired consumption per worker tra­

jectory. This procedure allows one to work with a general 

control problem less difficult than the one generated .by 

the team decision approach. However the solution to the 

sùboptimization form of the problem is not optimal in the 

sense of the team decision problem since it allows for com­

promises and trade offs between the general and subunit 

objective functions. Changes made in the subunit decision 

variables are reflected in the value of the general ob­

jective functional. 

As a numerical example of how one might proceed with 

this sùboptimization process, consider the model T-4. Sup­

pose that EL = .2 and = .3 are determined from the sec­

tors in question. The allocation ratio Aj^(t) is chosen for 

subintervals of a 15 year horizon by an independent sùbopti­

mization process as mentioned and the values of A^(t) are 

given as: 

if 0 £ t <_ 5, 

= Z^ if 5 < t £ 10, 
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= If 10 < t < 15, 

0 1 Zj 1 1 j = 1,2,3 . 

The output-capital ratio is defined over [0,15] as, 

B(^i) = + (I-A^)B^ . . 

There are two subunit decisions in this example, one of 

choosing has been made; the other is that of choosing 

c*(t). The variable c*(t) represents the desired con­

sumption per worker trajectory. Suppose that a subunit of 

the economic unit in question, say the businessmen, wish a 

given desired path c*(t). Now the central planning authority 

can take as given A^^t), the allocation ratio between sec­

tors, and c*(t), the desired consumption per worker tra­

jectory, and the desired final output of the complete 

unit, and solve the following problem, 

/f 2 
minimize J = / (c(t) - c*(t)) dt 

o 

subject to Y(t) = B(A^)(Y(t) - c(t)L^e^^) 

Y(0) = Y^ and Y(t ) = Y^ . 

which is a slight extension of problem T-2. Changes made 

in c*(t) or A^(t) are reflected in J. If J is not small 

enough then compromises from sybunit optimal values must 

be made in either c*(t) or X.(t) and then J recomputed. 
1 
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Thus by a series of trade offs from the subunit optimal 

values the overall "best" can be obtained for the complete 

unit. The "best" Is measured by means of the smallest 

functional value J consistent with the submitted current 

subunit control values of c*(t) and X.(t). To illustrate 

how c(t) and J change with respect to the optimal con­

trol c(t) and functional value were computed for three se­

quences of values of with c*(t) held as c*(t) = 9.0 + 

.5tj a subsistence term plus a linear time trend. The se­

quence of for this illustration were not selected as 

optimizing subunit values but simply values close to its 

maximum or minimum with switches between these values and 

the value X^ = 1/2 for a comparison. 

1. Equal allocation X^ = 1/2 for 0 £ t £ 15» 

2. Low X^ = .1 for 0 <_ t £ 10 then high X^ = .9 for 

10 < t < 15. 

3. High XjL = .9 for 0 _< t £ 10 then low X^ = .1 for 

10 < t < 15. 

The parameters used for the computation are = 

100.0, = 212. (which allows for a 5% growth rate per year 

on Y(t)), t^ = 0, t^ = 15.0, = 10.0, r = .01 and pen­

alty constant is 3.0. This computational example is given 

simply as an illustration of how one might use the sub-

optimization procedure and how certain of the controls are 

related. The value of J reflects how the subunit decisions 



www.manaraa.com

127 

affect the complete unit model. 

One notes from Table 3.15 that sequence 2 has clearly 

the smallest J value. If that J value were not. small 

enough, then compromises would have to be made in the sub-

unit optimal values J c*(t), A^(t) or possibly the terminal 

target constraint Y(t^) = and the general model recom­

puted. Also J can be computed as a function of the 

switching time t^. Various computations can be made to 

determine the switch time which gives a minimum J. 

Table 3.15. Consumption per worker c(t) for three sequences 
of values of the allocation ratio 

1. 2. 3. 
A.=1/2 te[0,5] A^=.l te[0,5] A^=.9 te[0,5] 

^=1/2 te[5,10] = .l tG[5,10] =.9 tE[5,10] 

=1/2 te[10,15] = .9 te[10,15] =.l te[10,15; 

t c(t) c(t) c(t) 

0.00 6.09 7.31 4.04 
1.80 8.01 8.50 7.39 
3.60 9.57 10.0 9.05 

5.25 11.0 11.2 10.5 
7.05 • 12.1 12.3 .11.7 
9.00 13.2 13.3 12.9 

10.80 14.2 14.3 13.8 
12.50 15.1 15.2 14.9 

13.65 15.8 15.8 15.6 
15.0 16.4 • 16.5 1.6.3 

J=17.639 J=9.50 J=33.43 
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A more general two-sector model will now be considered 

which generalizes the neoclassical growth model of Section 

B by allowing for two sectors using different techniques of 

production. No computation will be performed on this and 

extensions of this model. Rather It will be indicated how 

the model could be decomposed similar to the procedure for 

problem T-4 and thus solved by Identical computing proce­

dures as was done with problem T-2 and T-3. In this gen­

eral two-sector model we are not limited to linear pro­

duction relationships. One sector produces a homogeneous 

capital good and the other a homogeneous consumption good. 

Let Y (t) be the output of the consumption good at 
c 

time t, and Y^(t) be the output of the Investment good at 

time t, GNP at time t, valued in terms of the consumption 

good is 

Y(t) = Y (t) + pY^(t) , (3.57) 

where p is the price of the investment good in terms of the 

consumption good. 

Each sector produces its output using two factors of 

production, capital and labor, as determined by the produc­

tion functions 

Y = Pj(Kj,Lj) , j=c,i (3.58) 

where K.(t) is the capital employed in sector j, and L.(t) 
J 

is the labor employed in sector j. Assume that each of the 
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production functions (.,.) satisfies the neoclassical 

assumptions represented by Equation 3.6 and Equation 

3.7. Also, the production functions exhibit no external­

ities in that the output of one sector does not depend di­

rectly upon the output or input of the other sector. 

The factors of production are homogeneous and can be 

freely shifted between sectors. Assuming both factors are 

fully employed, then one has 

Kg(t) + K^(t) = K(t) , (3.59) 

L^(t) + L^(t) = L(t) , 

where K(t) is the aggregate stock of capital, and L(t) is 

the total labor force available at time t. The total capi­

tal stock is augmented by investment and subject to depre­

ciation at the constant rate 5, 

K =  -  6K (3 .60)  

while the labor force grows exponentially, 

L = rL . (3.61) 

The model can be reformulated in terms of per worker 

quantities. 

1) . (3.62) 

Yl K 
j_ = f^(k.) = 1) . 
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The variables k and k. are sectoral levels of capital per 
^ 1 

worker and 1^ is the proportion of the labor force allocated 

to sector j, 

Ij = ̂  >_ 0 for j=c,i 

kj >_ 0 for j=c,i 

and 

1^ + 1^ = 1.0 ^ (3.63) 

Consumption per worker is given by the equation, 

Y 
= 1 f (k ) . (3.64) 

c l c c c 

Investment per worker is, 

Y. 
= lifi(ki) . (3.65) 

Gross National Product per worker in terms of consumption 

goods is thus 

y = y^ + py^ , (3.66) 

and aggregate capital per worker in the economic unit is: 

k = n = kglc + kill , (3.67) 

so from Equation 3.60 one obtains the differential equation, 

k = y^ - (6 + r)k . (3.68) 
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The problem of optimal control for the two-sector model 

is then the problem of choosing time paths {l^(t), l^(t), 

k_(t), k^(t)} such that J is a minimum, where 

tf _ t 2 
J = / -e P L(y )dt + 2[k(t ) - k ] (3.69) 

subject to the constraints: 

k = - (<S+r)k (3.70) 

k(t ) = k and k(tp) = k„ 
O  O  I I  

^0 = lcfc(kc) 

= llfl(ki) 

+ Ic = 1-0 

k = 

kj,, kj, Ij, Ig 1 0 

and piecewise continuous where k is the state variable; 

1^3 1^, k^ and k^ are the control variables and f^( .), 

f^(.) and L(.) are given strictly concave functions; 

tp, pj 6, r, k^, k^ and t^ are given parameters. 

If one determines 1^ by a subunit optimization pro­

cedure as previously mentioned over subintervals of the 

planning horizon CO,t^], then this two-sector problem 
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reduces to a slight modification of the problem T-3 con­

sidered in Section B. When 1^ is known, by Equation 3.63, 

Ig is known. Equation 3.67 can then be solved for k^^ in 

terms of k and k^, 

k-k 1 
1, _ c c 

The preceding control problem then is identical to that 

considered in Section B. 

tf 
minimise J = / -e (1-1^. )f^'(kj,) )dt + 2[k(t^ )- k^]^ 

subject to, 

k - l^f^\ I - (6+r)k 

k(0) = k^ k(t^) = k^ 

the state variable is k(t) and the control variable is 

k^(t). In the absence of a subunit optimizing procedure 

to compute 1^, deterministic simulation can be performed to 

approximate the minimum of J as a function of 1^, and the 

switching time t^. Approximations to the optimal solution 

can thus be made by repeated computation of the control 

problem to minimize J with respect to l_(t). 

Most investments yield their benefits in the form of 

identifiable goods that may be marketed or withheld. The 



www.manaraa.com

133 

future benefits from such an investment can be measured by 

the output evaluated at the price at which it can all be 

sold, less all current production costs. But a wide class 

of investments yield benefits which by their very act of 

production, inure to a wide class of people. These indi­

viduals cannot reasonably be excluded from the benefits and, 

thus a price cannot be charged that will effectively dis­

criminate between those who want service and those who do 

not. Water purification provides a simple example. Ser­

vices derived from government investment may not be charged 

for, or, if they are, the rate need not correspond to their 

marginal usefulness to society. 

The whole purpose of investment policy is to determine 

optimal decisions of present and future investment, and the 

optimal choices at different times are interrelated. One 

should also be concerned that future government sector in­

vestment decisions are similarly optimal. 

An extension of the model just treated is a model 

formulated by Uzawa (72). He considered the problem of 

optimum fiscal policy in terms of the techniques of optimum 

economic growth. The model is an aggregate two-sector 

growth model consisting of a private and a public sector in 

which both labor and private capital are used to produce 

goods and services. Private goods may be either consumed 

or accumulated as capital, while public goods are all 
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consumed. 

Many countries have come to regard fiscal policy both 

as an Instrument to achieve short-run goals and to implement 

long-run objectives, such as economic growth. The Ramsey, 

theory (60) and related work (67) are based upon an economic 

structure similar to that of a centrally planned economy in 

which a central planning bureau is free to allocate the 

means of production, labor and capital, in whatever manner 

it desires. In most countries, the allocation of the means 

of production is not directly governed by the state author­

ities. Uzav/a (72) supposed that the public sector could 

determine not only the fiscal policy but also the alloca­

tion of capital and labor between sectors and the division 

of private goods between consumption and investment. 

The private sector comprises business firms and house­

holds. The output produced in the private sector is as­

sumed to be composed of homogeneous quantities so that any 

proportion may be either instantaneously consumed or ac­

cumulated as part of the capital stock. The public sector 

provides the private sector with different goods and ser­

vices than those it produces. Public sector goods and ser­

vices are assumed to be measurable and distributed to the 

private sector free of cost. Capital accumulations take 

place only in the private sector and public goods are not 

accumulated. Both production processes employ capital and 
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labor and are subject to all the neoclassical conditions as 

in Equation 3-7 and 3.6. The notation is similar to the 

previous two-sector model, where the subscript i indicates 

public sector and c Indicates private sector. Production 

processes are defined as in Equation 3.58. The quantities 

of capital and labor in each sector are as in Equation 3.59. 

The output of private goods, Y^(t), is divided between con­

sumption, C(t) and investment, Z(t): 

C(t) + Z(t) = Y^(t) . (3.71) 

The accumulation of the capital is described by 

K(t) = Z(t) - ôK(t) , (3.72) 

where 6 is the rate of depreciation and r is assumed to be 

exogenously given: 

L(t) = rL(t) . (3.73) 

The utility function of the representative member of 

society depends upon the amount of private goods to be con­

sumed and upon the average quantity of public goods avail­

able at each moment. Public goods are assumed to be dis­

tributed equally among the members of the economic unit. 

Let L(c(t),y^(t)) be the utility function where c(t) and 

y^(t) stand respectively for the quantities of per worker 

consumption of private and public goods. The objective 

functional is represented as the discounted sum of in­

stantaneous utilities through time: 
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- t J = / L(c,y.)e P dt (3.74) 
o ^ 

where p is the rate by which future utilities are compared 

with the present utilities. 

Suppose that the public sector can determine not only 

the fiscal policy but also the allocation of capital and 

labor between sectors and the division of private goods be­

tween consumption and investment. The public sector then 

seeks for the feasible time paths of factor and output allo­

cation at which 3.74 is maximized. The problem is more 

precisely defined as follows: Find a time path of 

{K^(t), K^(t), L^(t), C(t), Z(t), Y^(t)} for which 

the functional 

eft) 
J = -f "(ETtT ' LTtT- )dt (3.75) 

o 

is minimized subject to the constraints: 

C(t) + Z(t) < P^(K^(t),L^(t)) , (3.76) 

Y ^ ( t )  1  P ^ ( K ^ ( t ) , L ^ ( t ) )  

K^(t) + K^(t) K(t) , 

^(t) + Lj_(t) < L(t) , 

K(t) = Z(t) - 5K(t) , 
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L(t) = 

with given initial K(0) = and terminal K(t^) = where 

all variables are nonnegative. 

Using the same notation as in the previous two-sector 

model with the addition of % = Z(t)/L(t), per worker invest­

ment" in the private sector, and omitting the time suffix and 

assuming full employment of all factors of production, the 

problem is reduced to the following: 

tf 
minimize J = -/ L(c,y.)e"^^dt + £[k(t ) - k_]^ 

o 

(3.77) 

subject to the constraints: 

c + z = fg(kg)l2 , (3.78) 

?! = fl(kl)ll ' 

kc^c + kill = k , 

ll + Ic = 1 , 

k = z - (r+6)k , 

k(0) = k and k(t ) = k„ 
O  I I  

The utility function, L(c,y^) is continuously twice dif-

ferentiable and has positive marginal utilities and 1^^: 

for all positive c and y^ and is strictly concave for all 
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the values of c and y^. Also the following properties hold 

for L: 

^cc^y^y^ ^ cy^ ° ' 

SiVi ^oyj. 

By combining the constraints, this control problem can 

be reduced to one with three control variables {k^,l^,c} 

and one state variable, k. 

^f 
minimize J = -/ L(c,f^(k^)l^)e""^^dt + ^(k(t^)- k^)^ 

subject to: 

• k—kjlj 
k = (1-1 )f (—-i^) _ c - (r+6)k , 

1 V 

k(0) = k and k(t^) = k^ , 

0 < 1. < 1 . 
— 1 — 

This problem could be computed directly as indicated in 

Chapter 2 using the Davidon algorithm together with se­

quential penalty functions to handle both the terminal 

constraint on k(t) and the inequality constraint on l^(t). 
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Another approach to solve this problem would be to de­

compose It Into a simpler problem like T-3. Suppose that a 

linear relationship between and Is assumed as 

where V Is a constant. This together with the equation 

lj_ + 1^ = 1.0 allows one to obtain the relationship, 

kj_ = hd^jkp) . 

Prom the equation k^(l-lg) + k^l^ = k a function relating 

kg to Ig and k can be determined, 

kg = S(lc'k) • 

Hence the control problem becomes: 

t^ 

minimize J = J U(c,k,lg)e ^ dt , 
o 

k = lgfg(g(lQ,k) )- c - (r+5)k , 

k(0) = k^ and k(t^) = k^ , 

0 < 1„ < 1 . — c — 

Now by choosing l^ft) at values close to its maximum 

and minimum or by an Independent suboptimlzation procedure 

where lg(t) can be determined, the control problem reduces 

to the problem T-3 of Section B. Various parameter changes 
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can be made as was done in Section B to determine how- J 

changes with respect to the constant V and the values for 

the l^(t) in the absence of any suboptimlzatlon procedure 

to choose 1 (t). 
c 

Arrow and Kurz (3) consider"a similar two-sector model 

as that of Uzawa (72) just treated. They differ in the 

conception of the role of public capital in the economic 

system. Uzawa (72) assumes that the output in each of the 

private and public sectors is determined by the amount of 

capital and labor invested in it, while Arrow and Kurz (3) 

assume that private output depends upon the amounts of both 

kinds of capital as well as of labor (one production func­

tion) . A version will be briefly presented as well as how 

it can be reduced for computation purposes to a problem 

similar to T-3. 

The following notation will be used: 

Kp(t) = total capital employed in the private sector 

at t, 

Kg(t) = total capital employed in the public sector 

at t, 

kg(t) = capital per capita employed in the public sec­

tor at t, 

K(t) = K (t) + K (t), 
p g 

c(t) = per capita consumption at t. 
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L(t) = labor supply at t proportional to population 

P(t) at t, 

P(t) = total population at t, 

Y(t) = output at time t. 

Tho output i:3 determined by 

Y(t) = A(t)F(K (t),K (t),L(t)) , 
P b 

where P is a concave production function and A(t) allows 

for neutral technological changes. 

The natural constraint is 

K (t) + P(t)c(t) + Kg(t) = A(t)F(Kp(t),Kg(t),L(t)) . 

The. control problem can then be formulated as follows: 

^f _ t 
minimize J = / e ^ P(t)U(c(t),k (t))dt , 

o ® 

subject to 

K(t) = A(t)P(K (t),K (t),L(t)) - P(t)c(t) , 

K(t) = K (t) + K (t) , 
P O 

Kg(t) = P(t)kg(t) , 

K(0) = and K(t^) = , 

TTt 
L(t) = L^e 

where U(c,k ) is a concave function. 
f > 
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Suppose we now let: 

Kp(t) = h(t)K(t) J such that 0 £ h(t) ̂  1 

where h(t) is a step function defined over [0,t^]. The 

problem can then be formulated as minimize J, where 

o 

+ |^(K(t^) - Kf)2 

subject to 

K(t) = A(t)F(h(t)K(t), l-h(t)K(t), L(t)) - P(t)c(t) 

K(0) = K and K(t_) = K„ 
o II 

L(t) = L^e^t . 

This problem is computed identically to problem T-3 

in Section B and can be solved numerically for various 

values of h(t) to obtain a relationship between J and h(t). 



www.manaraa.com

143 

IV. GENERALIZATION OP THE COMPUTING FRAMEWORK 

A. Generalization of Two-Sector Growth Models 

In order to generalize the model represented in Chapter 

3 as problem T-4, consider the division of the consumption 

good sector into three subsectors. The model represented by 

Equations 3.45 and 3.46 can be written as: 

i(t) = AiBiI(t) , (4.1) 

C^(t) = A^B^I(t) , 

CgCt) = XgBglCt) , 

C_(t) = X^B^Kt) , 

where 

= Consumption goods produced by modern factories, 

Cg = Consumption goods produced by small, family type 

factories, 

Cg = Services. 

One may include with Equations 4.1 the following, 

Y(t) = I(t) + C^(t) + Cgft) + C_(t) , (4.2) 

and 

Ai + Ai + A2 + A3 = 1 (4.3) 

where Y(t) is the aggregate output and I(t) represents 
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Investment goods. The proportion of total investment allo­

cated to produce investment goods is while ^2* ^3 

represent the proportion of total investment allocated to 

the three subsectors respectively. The values , B^, 

and are known numbers derived from the subsector or sec­

tor in question. 

There are various ways In which this model can now be 

linked to a control problem. One way is to simply add the 

Equations 4.1 and use the time derivative of 4.2 to obtain 

the following differential equation. 

Y(t) = (XiBi+AiBi+XgBg ^3B3)[Y(t)-Ci(t)-C2(t)-C3(t)] 

(4.4) 

where Y(0) = and Y(t^) = Y^ are known values. One may 

form as a performance functional, 

2 2 minimize J =j [w2(C^(t)-C^(t)) + w2(C2(t)-C|(t)) 
o 

+ W2(C^(t)-C*(t))]dt , (4.5) 

where C^*(t), Cg^tt), C^^Ct) are desired levels of consump­

tion available in each subsector and 

c*(t) = C*(t) + C*(t) + c*(t) 

is the desired total consumption available. The w^ are 

known weights assigned to the deviations from the desired 

paths. The Equations 4.3, 4.4, 4.5 and the boundary 
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conii i.tlonu J'oi'm Iho control problem formulation. The prob­

lem bar. one «lato vai'lablo Y(t) and the seven control var­

iables, X^(t), X^(t), X^(t), A (t), C^(t), Cgft), Cg(t). 

One of the can be eliminated by Equation 4.3. 

A more operational formulation would be in the follow­

ing modification. Consider the two-sector model in the for­

mat of problem T-4 as discussed in Section C of Chapter 3. 

In that model, C = C^ + Cg + Cg and Equation 4.1 collapses 

into the two-sector version. From the two-sector problem 

select the optimal X*^ on the basis of minimizing the per­

formance functional. Equation 3.53, within the given plan­

ning horizon. Also from the solution one obtains I(t), 

Y(t) and C(t) at discrete time points over [0,t^]. The 

allocation ratios between subsectors could then be chosen 

to secure balance with marginal proportions of consumption 

demand. For example, if «2» "3 denote the marginal 

propensities to consume of the three types of consumption 

goods and X^ + X2 + Ag = 1 - X*j^ is the condition of full 

utilization of investment, the balancing values of x, can 

be specified as: 

3 
X = o,(l-X*i)/( 2; a.) , j=l,2,3 . (4.6) 

J J 1=1 1 

With the Xj values thus selected, and the I(t) func­

tion known at a discrete set of time points on the basis of 

optimizing within the related two-sector problem, the values , 
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of Cj(t) can be computed from Equations 4.1. One may either 

specify Cj(t) at the initial time, t^ or the final time, t^. 

If the former is used and the Equations 4.1 involving C^. (t) 

may be discretized and using the known values of I(t) com­

puted forward in time. While if the latter is used then the 

procedure is to discretize and move backward from t^ to t^ 

in time. This same procedure could be utilized for more 

than three subsectors, always using the optimal results 

from the related two-sector problem. 

Consider now an intersectorial generalization of the 

modified Goodwin model represented in Section B of Chapter 

3 as control problem T-2. One may assume an n-sector inter­

dependent model of the dynamic Leontief type input-output 

scheme. Also let us assume time dependent sectorial co­

efficients as in problem T-4. 

Denote the n component column-vector of real consump­

tion, real national income and net investment by C, Y and 

I, respectively, and define the intersectoral capital-output 

time-dependent coefficient by B(t), where B~^(t) exists for 

all te[0,t^]. 

I = B(t)Y where B(t) = (b^^(t)) (4.7) 

i = 1,...,n 

J l,...,n . 

The following equations define the generalized model 
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in terms of the consumption and income vectors. 

C = Y - I = Y - B Y  ( 4 . 8 )  .  

n n 
U = E u. = E w.(c.-c*.) • (4.9) 

1=1 ^ i=l 1 1 ^ 

where the performance functional is given as 

tf n p 
minimize J = f z w.(c.-c*.) dt (4.10) 

o i=l 1 1 ^ 

and the w^ are given weights. The desired consumption time 

path in the ith sector is given by c*^(t). Let the boundary-

conditions be given as: 

Y(0) = Yq , and Y(t^) = Y^ . (4.11) 

Equations 4.8, 4.10, and 4.11 form the control problem. 

One first notes that if the time-dependent intersec­

torial investment matrix B(t) is strictly diagonal, then the 

above intersectorial model decomposes into n independent 

control problems each of which is identical to problem T-2 

except for a time varying capital-output function. The 

computation in this case is simply repeated solution of a 

problem like T-2 with terminal constraints on the final 

sectorial output. The problem for the ith sector is: 

minimize J. = / w. (c .-c* . )^dt + ^(y^. (t-) - y^ )^ 

(4.12) 
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subject to, 

^1 = b.!(t) ' (4-13) 
11 

yi(o) = YQ, i yi(tf) = . (4.14) 

The economic meaning of this is that if the different 

sectors are relatively Independent in the sense that the 

marginal capital requirements for increasing output in any 

sector are obtained either entirely through that sector 

itself or from outside the n sector system by a central 

planning authority, then for each sector an optimal set of 

time paths for y^ and c^ can be determined. 

This assumption of independence may be viewed as a 

specific type of disaggregating the economy. The question 

of whether this is empirically realistic or statistically 

estimable is a separate issue. However from the compu­

tational point of view this assumption of independence 

allows for a simple means of computing the optimal tra­

jectories for each sector. 

In the case where B(t) is not strictly diagonal the 

problem becomes one of n state variables y2,...,y^ and n 

control variables c-j^j...,c^ with terminal constraints on the 

state variables. 

Computationally this problem is a generalization of 

problem T-2. It requires n penalty constants and n control 
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variables with no inequality constraints. This type of 

problem can be solved by the Davidon and conjugate gradient 

methods but computational difficulties increase with the 

number of penalty constants used and the number of control 

variables. The procedure for solution is as discussed in 

Chapter 2. 

However from my computational experience the iterative 

techniques of Chapter 2 have limitations for a problem with 

a large number of control variables and where many penalty 

constants are used. 

An approach to numerically solve the optimal control 

problem with linear inequality constraints and a large num­

ber of control variables that appears to be more operational 

than applying the Davidon or conjugate gradient methods with 

penalty functions is extensions of the discrete model de­

veloped by Bruno (9). One may generalize from the two-

sector model treated in Section E of Chapter 2 to any num­

ber of activities for consumption goods and investment goods 

and still only one homogeneous capital good. Also treatment 

of the case of any number of depreciable capital goods will 

be considered. In both cases the technology matrix A(t) 

may be a known time varying matrix function. 

Consider the model of one activity to produce consump­

tion goods and two activities to produce a depreciable cap­

ital good. The notation used will be identical to that 
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used in Section E of Chapter 2 with the addition of 

Zg) which represent Investment per worker in activity one 

and two respectively. In per worker terms the problem can 

be formulated as follows: 

^f _ t 
maximize J = / c(t)e'"^ dt (4.15) 

o 

subject to, 

a^^(t)c(t) + ai2(t)Zi(t) + + e^ft) = 1 

(4.16) 

a22(t)c(t) + a22(t)z2(t) + a22(t)z2(t) + e(t) = k(t) 

k(t) = -(r+ô)k(t) + z^(t) + Z2(t) (4.17) 

k(0) = k^ and k(t^) = k^ 

where A(t) is a known matrix function, c(t) is per worker 

consumption and k(t) is per worker stock of capital. 

This problem, by using the maximum principle as was 

done in Section E, Chapter 2, reduces to finding the solu­

tion of the linear programming problem, 

maximize = c(t) + ir(t)(z^(t) + z^ft)) (4.18) 

subject to the constraints 4.16 at each discrete time point. 

The dual is 

minimize = w(t) +s(t)k(t) (4.19) 



www.manaraa.com

151 

subject to. 

a^l(t)w(t) + &2i(t)s(t) - p^ft) = 1 (4.20) 

a^2(t)w(t) + a22(t)s(t) - p^ft) = n(t) 

a^gttywtt) + aggCtïsCt) - pgCt) =. irCt) 

where w(t), s(t) represent the real wage and rental price 

of capital all measured in consumption units. Prom linear 

programming theory one has, 

z^Pl = Z2P2 = cPo = = se- = 0 . (4.21) 

The dynamic equations that link together the various 

discrete time points are, 

k = -(r+6)k + + Z2 ' (4.22) 

As in Section E of Chapter 2 p is the time rate of dis­

count, r is the exogenously given growth rate of labor and 

6 is the depreciation rate of capital. 

The neighboring extremal method as considered in Sec­

tion E of Chapter 2 can be implemented to solve this problem 

and extensions of it to & activities for consumption goods 

and m activities for investment goods. One estimates m(0) 

k(0) = and k(t^) = k^ 

and 

ÏÏ = (r+6+p)n - s (4.23) 
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and with the given value k(0) this allows one to solve the 

linear program given by Equations 4.18 and 4.l6 at time 

point t = 0 and its dual Equations 4.19 and 4.20. This re­

sults In computed values for c(0), z^(0), ZgCO), s(0), 

w(0), p^(0), PgCO), pgfO), 6^(0) and e(0). Then using the 

differential Equations 4.22 and 4.23, k(t^) and nft^) are 

computed where t^ Is the first discrete time point. 

The process of computing the linear program and its 

dual are thus continued at each discrete time point using 

the differential equations to link together the time point 

values of k(t) and n(t) until k(t^) is determined. If 

k(t^) does not approximate k^ then a new value for n(0) 

is considered and the procedure is repeated until k(t^) 

approximates k^. The value k(t^) is dependent upon n(0) 

and an interpolating procedure can be used to improve the 

choice of Tr(0) after each Iteration. 

The preceding model could easily have been generalized 

to Include «, activities producing consumption goods and m 

activities to produce homogeneous Investment goods. The 

computational procedure would be Identical to that already 

considered. 

Consider now the general n-sector model with heter­

ogeneous capital goods. An economy produces n+1 goods, a 

consumption good c, and n depreciable goods with 

exponential depreciation rates 6^(1=1,2,...^n). Assume 
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labor, as before, to be growing at an exogenously fixed 

rate r. The notation will be the same except that sub­

scripts will be added to the variables involving'the capi­

tal goods (z, kj X, Ej s, IT, p). 

The problem now becomes: 

tf 
maximize J= / c(t)e ^^dt (4.24) 

o 

subject to the n+1 constraints, 

n 
a (t)c(t) + z a (t)z (t) + E (t) = k (t) 

i—1 J-1 *1- -L 

r=0,l,...,n (4.25) 

where kQ=l and all variables c, and k^ are understood to 

be nonnegative. There exists a differential equation for 

each capital good. 

k^ = -(r+6^)k^ + z^ , (4.26) 

k.(0) = k. and k.(t_) = k. , (1=1,...,n) 
1  1 1 1 ^  

(4.27) 

The Hamiltonian is formed as, 

H = e ''^[c(t) + E IT. (t)(z. (t) - (r+ô )k (t))] , 
1=1 ^ ^ ^ 1 

(4.28) 

where the adjoint variable is n(t)e"^^. 

One may rewrite the function to be maximized as L, 
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•where L is defined as follows, 

, n 
L = He^ + E TT (t)k. (t) (r+ô. ) • 

i=l 1 ^ ^ 

n 
= c(t) + E IT. (t)z,(t) . (4.29) 

i=l 1 1 

The summation term on the left is a constant at each dis­

crete time point and is known initially and generated sub­

sequently by the system differential Equations 4.26 and 

4.27 and the following adjoint differential equations 

•ir^(t) = (r+6j.+p)ir^(t) - s^(t) , i=l,...,n . (4.30) 

Hence maximizing L also maximizes H. 

The primal linear program necessary to solve the con­

trol problem is then the objective function 4.29 and the 

constraints are Equations 4.25. The dual linear program 

system becomes, 

n 
D = w(t) + Z s.(t)k.(t) (4.31) 

i=l ^ ^ 

subject to the constraints, 

n 
• w(t)a + 2 s (t)a - p. (t)' = TT (t) , 

i r=l ^ ^i ^ 1 

i=l,...,n . (4.32) 
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n 
a w(t) + I a (t)s (t) - p = 1 . (4.33) 
o r=l ° 

The variables w(t), Sp(t), (r=l,...,n) are the wage 

rate and the rental price of the types of capital measured 

in consumption units. This model has n sectors and a single 

technique for producing the consumption good. 

The values k^(0) are given and one then approximates 

ir^(0) (1=1,...,n). With this information the primal linear 

program whose objective function is given by Equation 4.29 

and constraints by Equations 4.25 and the dual 4.31, 4.32, 

and 4.33 are solved. Using the differential Equations 

4.26 and 4.30 together with the boundary conditions 4.27, 

ïr^(t) and k^(t) are stepped up in time and the process is 

repeated until k^(t^) (1=1,...,n) are computed. These 

values are compared to and if all the values are not 

within a given tolerance of k^(t^), then the m^(0) 

(i=l,...,n) are rechosen and the computation repeated until 

the boundary conditions are approximately satisfied. 

One notes that this numerical procedure to solve the 

previously mentioned control problem does not require a 

constant technology matrix, but allows for a time varying 

matrix function. The computational procedure requires a 

process of altering the initial values of Trj^(0) until the 

boundary conditions k^(t^) = k^ are satisfied. 
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B. simulation of Optimal Trajectories 

Another approach by which one may numerically solve and 

study optimal economic growth- problems relates to simula­

tion, both stochastic and deterministic. The objective of 

the simulated optimization approach is to develop efficient, 

economical techniques for locating improved but not nec­

essarily optimum solutions to modèle where other optimiza­

tion techniques cannot be realistically applied or are too 

costly to utilize. 

A great deal of literature on control theory, feedback 

and sensitivity analysis is relevant to this problem, for 

example Pox, Sengupta and Thorbecke (27), Sen (63), Hestenes . 

(32), Theil (69)j Naylor, Wertz and Wonnacott (55), Naylor 

et al. (54), Promm (28), and Fromm and Taubman (29). Fromm 

and Taubman (29) have applied the technique of simulation 

via repeated solution of an economic model to compute the 

utility of alternative policy actions for evaluating the 

relative desirability of a set of monetary and fiscal policy 

actions. Naylor, Wertz and Wonnacott (55) used stochastic 

simulation to compare the stability of various policy actions 

by statistical techniques. 

At least four general alternatives are available to 

economic policy makers for evaluating the effectiveness of 

their decisions involving economic policies. First it may 

be possible to perform controlled experiments with the given 
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economic system, where the system may be a firm, an in­

dustry, or the economy of a country. Usually institutional, 

political and other practical constraints make this al­

ternative impossible in the case of an industry or the 

economy as a whole,, and difficult in the case of a firm. 

Even where actual experiments may be carried out it is un­

likely that the relevant variables can be held constant to 

obtain meaningful comparisons of policy alternatives. 

Second, one may use an objective functional as was 

done in the earlier work to determine an index of perform­

ance on the economic system. Optimizing the functional 

subject to the equations describing the system gives a meas­

ure of effectiveness of the optimal policy with respect to 

the index chosen. Parameter variations can then be made 

using the functional value as an indicator of sensitivity 

measure as was previously done. 

Third, if cross-section data are available over time, 

it may be possible to perform a type of ex post experiment 

with an economic system. 

Fourth, when controlled experimentation is impossible 

or impractical and cross-section data is unavailable, then 

the policy maker may use the following alternative. He may 

formulate and estimate the parameters of the model of the 

given system relating the endogenous variables of the system 

to the exogenous variables and policy instruments or controls. 
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If the model consists of a large number of simultaneous, 

nonlinear differential or difference equations possibly 

with stochastic error terms included then analytical tech­

niques exist in theory only. When this is the case one 

must resort to numerical analysis techniques which were• 

treated earlier and/or simulation to evaluate alternative 

economic policies. 

Simulation may be defined as a numerical procedure for 

conducting experiments on a digital computer with certain 

types of mathematical models describing the behavior of an 

economic system over extended periods of time (5^). The 

simulation may either be stochastic in which random variables 

are involved or deterministic where parameter modifications 

are considered. For example in the optimal economic growth 

problem deterministic simulation may involve experimentation 

with various feedback relationships or possible ways of 

simplifying a complex model as was done in Section C of 

Chapter 3. Stochastic simulation allows for stochastic 

error terms to be included in possible feedback relation­

ships or in production processes. The principle difference 

between a simulation experiment and a "real world" experi­

ment is that with simulation the experimentation is con­

ducted with a model of the economic system rather than the 

actual economic system itself. 

A question of interest is how does the optimal solution 
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computed from a growth model with a performance functional 

based on utility of consumption compare with the consumption 

path computed from various runs of a simulated system based 

on some sort of feedback relation either deterministic or 

stochastic. Comparisons may be considered either on magni­

tude of consumption, C(t), or its variability, or of the 

computed utility of the consumption. Experimentation based 

on the computed optimal paths from problem T-3 will be com­

pared with various simulated results. One wishes to find the 

combination of parameter values or factor levels at which the 

response variable is maximized to optimize some process, in 

this case the objective functional. 

For the first experimentation, consider the discretized 

version of problem T-3, where the parameters are as defined 

in Section B, Chapter 3. The objective function becomes 

maximize J = V ^ [KCP) -

+ Cfcïï + TÏTFT'' ̂ 3'-5' (4.34) 

subject to the difference equations, 

^i+1 = ?i - C-i + (l-ô)K. , (4.35) 

= (l+g)^aK^® (4.36) 

where and Krp are given values and g = r(l-B) + z and 
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pc Is a positive penalty constant. 

An example of the use of deterministic simulation will 

be treated for the problem T-3 with respect to a feedback 

relationship. The parameter values for the model are given 

as follows: 

B = .6, n = .9» 5 = .05, = 24.0 (a 5% rate of growth 

on output Y^), time horizon [0,10], rate of labor 

growth, r = .025, neutral rate of technical change, 

z = .01 and penalty constant, pc = 3.0. 

A feedback relationship of the form 

is considered, where is consumption at the 1th period 

and is the output of the economic system at the 1th 

period. The first case treated will be linear with no 

intercept term of the form 

One notes that Equation 4.37 and 4.38 are exact re­

lationships and have no stochastic error terms. The param­

eter «2 Is then allowed to assume various values and for 

each value the relationship 4.38 is substituted Into the 

difference equation system 4.35 and 4.36. Thus Yj^ 

for 1=0,1,2,...,T can be computed. 

Ci = gCY^.Y ^,Y^_l,...,Yi_j (4.37) 

Ci = a^Y^ (0 < < 1) (4.38) 
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Prom the computed values the objective function 4.34, 

the utility of alternative policy actions, is determined for 

each modified value of « Results for the discretized T-3 

problem follow in Table 4.1. 

A regression of the optimal time path data computed in 

Section B of Chapter 3 gives the relationship between C^ and 

as = .674 Yj; with a multiple determination coefficient, 

R^, of .78. It is interesting to note that the simulated 

value of ajL ~ *670 yields the objective function J extremely 

close to the optimal computed functional value of J = 98.18. 

For the values of greater than .70 the computed value of 

Table 4.1. Objective function values for different choices 
of the feedback constant a, (deterministic 
simulation) 

Ci - "l?i Ci - "1?1-1 

J «1 J ("1 

91.14 .62 83.17 .63 

96.66 .64 91.76 .65 

98.04 .67 96.65 .67 

96.09 .68 98.03 .69 

90.56 .70 96.05 .71 

81.90 .72 90.87 .73 
70.39 .74 82.67 .75 
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Y(t) is much below the target value Y^. For the model T-3 

the neutral technological growth parameter would have to be 

greater than this run value of z = .01 to allow a coeffi­

cient value (marginal propensity to consume) greater than 

«2 = .66 to be an optimal value. 

For the lagged relationship & least square 

fit of the optimal time path data computed in Section B of 

Chapter 3 gives the relationship = .694 for the ten 

year horizon. The multiple determination coefficient is 

.80 and the residual variance equals .26. Again the feed­

back simulation value of the parameter = .69 gives an 

extremely close simulated value to the feedback coefficient 

obtained by the regression of on Y^^ from the optimal time 

path data computed from the control theory algorithms. 

A reason for including a stochastic disturbance term 

in the model is that one may replicate the simulation ex­

periment for given stochastic parameter specifications and 

then construct confidence intervals and make probabilistic 

inferences about the differences in the effects of alterna­

tive parameter choices. Without the inclusion of these dis­

turbance terms, one can say little about the statistical 

precision of the inferences made about the effectiveness of 

parameter choices on the basis of simulation experiments. 

Also wars, foreign competition, labor strikes, and national 

disasters are factors which might affect national income and 
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consumption but which may not be subject to prediction and 

control by the policy makers. 

Factorial experimental designs and multiple comparison 

techniques are relevant to analyzing simulation data (62). 

For example two parameters of interest may be considered at 

five levels each. If one requires a complete investigation, 

including main effects and interaction of all orders this 

requires 25 cells. Replication within each cell can be 

made a given number of times. Less than a complete investi­

gation will require less cells and thus less computer time 

and simulated data. One then searches for the factor levels 

at which the objective function is maximized. 

The control problem feedback simulation experiments on 

problem T-3 which were conducted consisted of four runs, 

one for each parameter specification. In each run the 

economy was simulated for a period equal to ten time units, 

and then J was computed. The simulation was replicated ten 

times using the given relationship of the feedback function 

together with a stochastic disturbance term. The feedback 

function used was + Uj^ where u^ are normally and 

independently distributed with mean 0 and variance equal 

.28. The results are summarized in Tables 4.2 and 4.3. The 

pseudorandom numbers generated were independently computed 

for each run and for each parameter modification. 

From the data in Table 4.3 the F value is computed as 
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Table 4.2. The objective function value, J, for different 
feedback, parameter values.with,a stochastic 
error term in the feedback relationship • 

Ci - i + ̂ i u^N.I.D. 
00 O

J 0
 

«1 = a.l = .67 . «1 ,=, .72 ai - .76 

96.46 97.68 87.08 61.22 

95.99 95.41 84.20 22.09 

93.90 93.62 82.23 88.45 

61.52 93.90 97.62 68.71 

85.33 87.18 36.43 34.49 

68.77 81.98 87.82 52.28 

77.45 85.86 67.76 56.22 
62.10 91.16 74.84 65.95 

64.65 96.89 83.13 45.83 
70.30 92.28 88.30 51.28 

Jl = 77.65 J 2 = 91.59 J3 = 78.94 J4 = 54.65 

Table 4.3. Statistics for one-way analysis of variance 

Source of Sum of d.f. Mean Square 
Variation Squares 

Mean Square 

Between 7098.82 3 2366.27 

Error 7727.8 36 214.66 

Total 14,826.62 
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P = 11.023. The null hypothesis, is that the popula­

tion means for the objective function values for the dif­

ferent parameter values are all equal. By employing the P 

statistic, the decision rule for accepting or rejecting 

becomes: 

if P ̂  P^ (3a 36),  then reject H^, 

otherwise accept where a is the significance level. 

The value of F (3, 36) is 3.28 and for P (3, 36) is 

4.40, hence the data generated by the simulated experiment 

do not support the null hypothesis. Rejection of the null 

hypothesis is made at both the .05 and .01 significance 

level. 

Having rejected the hypothesis that the objective func­

tion value associated with each of the four feedback rela­

tions is the same, one may now consider multiple comparisons 

between the feedback relationships. 

Tukey's method (62) will yield simultaneous confidence 

intervals for the differences between all pairs of means. 

With a 95^ probability, all of the following confidence 

intervals are true. 

Let be the functional value of the ith replication 

of the jth parameter modification and be the mean of the 

jth modification. 



www.manaraa.com

l66 

(EJj - EJg) = (Jj - Jg) ± qk,p/ n / MSe 

j jS-l 4 jfe 

where q is tabulated under the title "Distribution of the 

Studentized Range" and 

k = the number of sample means, 

p = the number of degrees of freedom associated with 

the error mean square. 

For the previous data generated by the single factor 

computer simulation experiment the formula for 95% confi­

dence intervals is given by. 

Table 4.4 contains a difference between sample means 

for all six pairs of difference in the experiment. An 

asterisk (*) indicates that the particular difference ex­

ceeds the confidence allowance, 17.65. 

Similar results are given for the feedback relationship 

The null hypothesis is likewise rejected for this case. 

k,p 

= (Jj - Jg) i (3.81)/21^ 

= (Jj - Jg) + 17.65 

' °1%-1 + "i-
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Table 4.4. Difference of sample means for 

«2 j\e 2 3 4 

.63 1 -13.94 -1.29 23.00* 

.67 2 12.65 36.94* 

.72 3 24.29* 

.76 4 

Table 4.5. Difference of sample means for 

« 1  j \ e  2  3  4  5  

.63 

.67 
. 69  
.71 

.75 

1 

2 
3 
4 

5 

-22.99* •26.88* 

-3.89 
-25.67* 
-2.68 

1.21 

-4.43 
18.56 
22.45* 
21.24* 

Table 4.5 summarizes the results for all pairs of sample 

means, where the confidence interval is given by 

T , ̂  / 262.3 
" ̂e) i ̂ 5,45 10. 

If the difference exceeds 20.58 it is significant at 

the .05 level and is indicated by the asterisk. 

For the short time horizons of ten years in the non­

linear problem T-3 the linear feedback relation was adequate 
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to give results that agreed with the data computed from the 

control problem algorithms. 

For a second feedback simulation experiment consider 

the T-3 problem,with the following parameters. Choose B = 

.25 and set the rate of technical progress z equal to .03 

to compute a model with parameter specifications approximat­

ing those of a developed economy. Let the time horizon be 

[0,50] and the other values are as given n = .9, 6 = .05, 

r = .025J and the penalty constant pc = .1. The final stock 

of capital is chosen as = 250. The results of determin­

istic simulation are summarized in Table 4.6. 

Table 4.6. Objective function values for different choices 
of the feedback relation for time 
horizon [0,50] with B = .25, Km = 250., z = .03, 
pc = .1 and a = 2.1723 

.63 

.65 

.67 

.69 

.71 

.73 

.75 

9 6 . 0  

223.2 

299.4 

327.5 

310.0 

250.2 

150.8 
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A regression of the optimal data computed from the con­

trol algorithm results in = .65 with a coefficient of 

multiple determination of .91. The simulated optimization 

indicates the optimizing value as = .69.  

This value is close to the feedback value obtained by 

running the regression of C. against Y. from the time path 
1 \ 

data computed from the control algorithms. The stochastic 

simulation for the 50 year horizon and feedback relationship 

C+ Uj^ where u^ are normally independent and identi­

cally distributed with mean 0. and variance 1.0 follow in 

Table k.J. 

The differences between sample means are summarized in 

Table 4.8 where the asterisk indicates that the difference 

is significant at the .05 level (greater than 2 3 - 1 3 )  •  

Other feedback relationships could be considered as 

well as other parameter variations to solve the control 

problem by simulation, but these cases illustrate the 

feasibility of this alternative way of approximating the 

optimal solution to the control problem by simulation 

techniques. 
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Table 4.7. Average values of the objective function for 
different a-, values where C. = a^Y:, + u^ 
u^ = N.I.D. (0,1.0) 

Simulation 
run J 

"1 

1 108.76 .63 

2 292.31 .67 

3 325.36 .69 

4 309.42 .71 

5 140.88 .75 

Table 4. 8. Difference in sample means 

2 3 4 5 

1 -183.55* -216. 6* -200.6* -32.0* 

2 -33. 0 -17.11 151.5* 

3 15.94 184.5* 

4 168.5* 
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V. SUMMARY AND FURTHER RICSEARCH 

Pour types of computation applied to optimal economic 

growth models have been considered and studied. The first 

was applying conjugate direction control algorithms to 

numerically solve deterministic optimal economic growth 

problems. The two iterative methods treated were the con­

jugate gradient and the Davidon algorithms and in both 

cases penalty functions were used to handle the terminal 

constraints on the state variables. In every case considered 

the Davidon method converged in less Iterations and was less 

sensitive to the search direction parameter than the conju­

gate gradient method. The penalty function approach proved 

adequate to handle the terminal state constraints in all the 

problems that, were studied. However a certain amount of nu­

merical experimentation was needed to select the right mag­

nitude for the penalty constants. 

Experience with each problem was needed to determine 

the correct choices. Sequential unconstrainted minimization 

techniques of varying the penalty constants was helpful yet 

experimentation was still necessary to achieve good selec­

tions of the constants for each subproblem. Disadvantages 

of the conjugate direction iterative methods may be noted to 

include the difficulties encountered in treating inequality 

constraints. This requires penalty constants for the 
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Inequalities and for the terminal constraints. Success of 

the method is thus greatly dependent upon judicious choices 

of the penalty constants and requires a great deal of com­

puter time and patience on the user's part to select ade­

quate penalty constants. 

However for nonlinear aggregative optimal growth models 

of from one to four state variables and one or possibly two 

control variables with no inequality and only terminal 

state constraints, the iterative conjugate direction al­

gorithms appear from the computational experience reported 

earlier to be a reasonable choice to solve such nonlinear 

problems. 

For operational planning type models with a large num­

ber of linear inequality constraints the second type of 

computational approach considered, the linear programming 

primal-dual problem with the neighboring extremal approach 

of Section A of Chapter 4 would be an attractive alternative 

to the iterative conjugate direction methods. A problem of 

further study would be to generalize the linear programming 

approach to a nonlinear objective functional. 

The third computational approach considered in Section 

C of Chapter 3 was reducing a complex model to a less com­

plex one by choosing some of the decision variables via a 

suboptimization procedure. This reduced the size of the 

problem and allowed for repeated solution of the complete 
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model and the submodel by control theory iterative algo­

rithms . This approach also allowed deterministic simula­

tion on certain decision variables to approximate the 

optimal solutions. 

The objective of the fourth computational approach, 

simulated optimization, is to locate improved but not nec­

essarily optimum solutions. This technique is highly at­

tractive compared to the computational difficulties involved 

in using iterative conjugate algorithms for large problems. 

The simulation can be utilized as described in Section C of 

Chapter 3 or as reported in Section B of Chapter 4. The 

latter approach proved successful in my experience reported 

in Chapter 4 Section B of assuming feedback relationships 

and optimizing on the parameters involved in the feedback 

relationship. The data generated can then be analyzed by 

a factorial experimental design and a comparison of cell 

means for the different choices of the parameters can then 

be made if the differences are significant. In addition, . 

complex optimal economic growth models can also be reduced 

to simpler ones by assuming relationships between the system 

dynamics and/or state and control variables. The simple 

models can then be solved by iterative conjugate direction 

techniques for given functional relationships as were 

described in Section C of Chapter 3» 

If the functional relationships to simplify the model 
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are assumed stochastic, then various computed replications 

can be made where each modification is considered as a fac­

tor level in a factorial design. Significant differences 

and comparisons can then be made to approximate the optimal 

choice of the functional relationships. If deterministic 

relationships are assumed then.deterministic simulation is 

effected. The advantage of this approach is that large 

optimal economic growth model solutions can be approximated 

by reducing the problem to a simpler one that can be solved 

by the Iterative conjugate direction algorithms reported 

here. The solutions are computed for the various functional 

relationships and the statistical analysis performed. This 

eliminates the computational difficulties of a large control 

problem yet may Increase the computer time (since each run 

is replicated) and sacrifices optlmality for only an Improved 

solution. 

The feedback technique with a dlscretlzed model as re­

ported in Section B of Chapter 4 is especially easy to com­

pute., It requires no iterative control algorithms and uses 

only feedback relationships between the state and control 

variables. As all other simulated optimization approaches 

it only approximates the optimal solution. However, the 

simulation using feedback relationships allows for the easy 

incorporation of stochastic relationships in the model. 

This allows for more realism since the nature of many 
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economic models would tend to be stochastic to allow for 

unpredictable factors rather than deterministic. 

The feedback technique as presented in Section B of 

Chapter 4 certainly is an attractive procedure to solve • 

either a deterministic or stochastic control problem if 

some idea of the state-control functional relationships 

are known. 

Three areas for further research would include investi­

gation into improved methods to handle inequality constraints 

in the control problem, continued investigation into the 

computation of stochastic control models as applied to 

economic growth, and investigation into the introduction 

of a nonlinear objective functional in the primal-dual 

linear programming approach of Section A, Chapter 4. 

It is my plan to continue research activity dealing 

in these and related optimization areas. 
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A computer code for solving problem T-3 by the 

Davldon algorithm and penalty functions to treat 

terminal state constraints. 
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IMPLICIT REAL*8(A-H,0-Z) 

COMMON F, OPTSTP,PC ,PSI ,GSû,OPA,TiTI ,X(10 ) ,D( 10 J, STOXKlOl j ,ST0X2( 1 
IOl),5T0U(lOl),S(lOl) ,S<101) ,G6( 101);Y(101) ,I N.IEWD, ITAB, IX, NFEVAL, 
2!«REINT,NV,K0UN 

COMMON/fF/ PZl,PZ2,PZ3,P24,PZ5,PZ6,PZ7,PZ8,PZ1C 
PZ1 = 0.<5 

PZ2-Û.6 
P23=C.03 
PZ4=C.C5 
PZ5=U.C1 
PZ6=C.025 
PZ7=PZ6*(1.DC-PZ2)+PZ5 
pze=c.a4i9 
PZlG=l,00/(1,00-PZll 
I END = 100 
ITAB = ItNO + 1 
KnUN = 4 

PC=3.DC 
I MAX = 14 
TI =.1DC 
NV= 1 
I STEP = 0 
IX — 1 
I'vFEVAL = C 
NREINT = C 
STQXK 1) = 15. DC 
STOO(I)=2.25D0 
T2Z = TI 
DO 10 I = 2,101 
ST0U(I)=2.25D0+.35DO»T2Z 
T2Z = T2Z + TI 

10 S(1) = 0.00 
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CALL FANOGCO.OOl 
GSQ = SP(G,G,2) 
WRITE (6,100) (ItSTQXKI),G(I). 1= 1,101,4) 

100 FORMAT (110,2020.8) . _ 
STPEST = .IDO/OSQRTIGSQ) 

DO 2 1 = 1,1 TAB 
2 Sd) = -G(I) 

DFA =-GSQ 
5 CONTINUE . -

DO 19 l=l,ITAB 
19 G_G( I) =_G( U -

CALL LINMIN(STPTST) 
. ISTEP = I STEP + 1 

IX = IX + 1 

... DO 3 I ."T.l.-t--I TAB_ —. —- -. - - — " - --
3 STOU(I) = STOU(I) • GPTSTP*S(I) 

WRITE (6,11) I STEP,NFEVAL.NREINT.F,GSQ,PSI ,J_i ,&TJXU J.)., S ia.X,2i.I )., 
1 STOU(I),G(I) ,1=1,101,4) 

WRITE (6,17) QPTSTP 
17 FORMAT (/// 015.7//////) 

IF(ISTEP.EQ.4) GO TO 50 ... ... . 
IFdSTEP.EQ.8) GO TO 50 
J_F ( GSa .LE. l.D-04) GC TO 30 ... 
IF(ISTEP.EQ.IMAX) GO TO 30 

j STPEST = 4.00*QPTSXP_ 
IF(STPEST.GT.L.DC) STPEST = L.DO 

1F~T IT . 'EQ.I) GO TO 21 
OFA= SP(G,S,1) 
IF (CFA.GT.0.00) GO TG 6 
GO TO 5 

b WRITE (6,12) 
IX = 1 
STPEST = OPTSTP/IO.DO 
GO TO 1 
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21 STPEST = OPTSTP/IO.DO 
GO.TU I 

30 WRITE!6,40) 
. .4P._FpRmTjAX,.'_ TIME GUT PUT _ S. AY.IMC S • ) 

T=C.D0 
DO. 3 5,1=1,1 TAB, 4 
Y1=DEXP(PZ7«T)*PZ8*(STCX1(I))**PZ2 
Sl=(Yl-STCU(I))/Yl 

WRITE!6,41) T,Y1,S1 
FQRM ATllll ,.3F.1.2. .6 ) . . 

35 T = T + 4.D0*TI 

5.0 W_RI JEJ 6,51) . _ 
51 FORMATdX,' TIME ',20X,'HAMILTONIAN') 
„TVi = ÛAO.O . 
DO 60 1=1,I TAB,IG 
HI =. -D^XP ( - PZ.2U!LLY 1 ) *2.Z10*iJlTi]U LI±j_»* 1J_.. . . 
H2= ST0X2(I)*(PZ8*DEXP(PZ7*TY1)*(ST0X1(I))**PZ2-STnU(I)-PZ4*ST0Xl( 

H=H1+H2 

. _ WRJJ£ii!t3-5J .TY-liH -
55 FORMAT!1X,F12.6,D36.10) 
6C:_T Y 1= TYj+lO , PC»XL-

IF !GSÛ .LE. 1.0-04) STOP 
- JF. ! ISTEP .EC. IMAX ) STOP. 

GO TO 18 
11 FORMAT (///1HO,8HSTEP.NO.,5X,20HFUNCTICN EVALUATIONS,5X,16HREINTER 

IPOLATIONS,20X,1HF,20X,3HGSQ,20X,3HPS1/IHO,15,118,123,036.10,020.6, 
— _^ 2 _ 3 . 3 & X ,  S H i r ^ O E  3 X _ , . 2 H X I ,JL8J(.,2HX2, 19X,1HU, 19X, IHG// ( IN , 136, 

33X,4D20.8)) 
12 FORMAT ('OUPHILL DIRECTION OF SEARCH—A STEEPEST DESCENT STEP WILL 
IFOLLGW) 
END 



www.manaraa.com

SUBROUTINE FANOG(TSTEP) 
IMPL IC IT R^*8J A-H,C-Z ) 
COMMON F,OPTSTP,PC,PSI ,6SQ #DFA ,T f T I .'x'( 10 ) ,'D( lû j , STOXl {101 ), ST0X2(1 ' 
10i;,ST0U(101)tG(lOl)tS(IOl)tG6(lUl)(Y(101)tINfIENOtITABtI X>NFEVAL« , 
2NREINTfNVfK0UN 
COM^ON/MF/ PZl,PZ2tPZ3,PZ4tPZ5_,PZ6,P27,PZ8tPZ10 : 
DIMENSION Z<101) 

C SAVE THE STORED CONTROL TABLE BY TRANSFERRING ITS CONTE_NTS TO Z _ . 
C " TABLE Z IS USED AS THE CONTROL IN THIS SUBROUTINE 
C 

DO T I=1,1TAB 
1 Z(I) = STOU(I) • TST£P*S(n 

G 
C _ INJEGRA.LE THE .STATE_ SYSTEM 
C 

T = .000 
X(l) = 15.DO 
1 = 1  

IN= 1 
.2 _IF (_LN._EQ. 4 .ORIN, EQ., 13) GO. JO 3 . 

IF(IN.EQ.3) U=(Z(i;+ Z(I+l))/2.00 
_ IFUN.EC.S) U= Z(I + 1) 
IF(IN.EG.l) U= Z(l) 

3 XI =X( 1) . 
D(1)=(PZ8*DEXP(PZ7*T)*(X1#**PZ2-U-PZ4»X1) 

4 CALL STEP<S2) 
1 = 1 + 1 

IF(I .LT. I TAB) GO TO 4 
PSI =.X(1) - 29.16D0 
PCPSI =(PC)*PSI 
F=( p z 10 * I z.( 1 ) * * ( .1. oci-£z I ii_iy 2.. m 
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F = - F 

TR = .0.00 
00 40 1=2,1 END 
TR =. TR + TI . 

40 F=F-(DEXP(-PZ3*TR))*PZ10*(Z(I)**(1.00-PZ1)) 
TR=TR + TI 
F=F-(DEXP(-PZ3 *TR)*PZÏÔ*(Z(1 TAB)**(1.00-PZ1)))/2.66 

C 
C INTEGRATE ADJOINT ECUATICNS 

F = TI*F + .500* P_CPSi»PSI 
C CALCULATE THE GRADIENT OF THE HAMILTONIAN 
C 

f = lÔ.DO 
TI = -0.100 _ 
X(l) =PCPSI 
ST0X2(ITAB) = PCPSI _ 
G( ITAB)=-DÉXP(-PZ3»T)*(Z(ITABI**(-PZl))-X(l) 
I = ilAB 
IN = 1 H 

5 IF(IN.EQ.4 ,CR. IN.EQ.13) GO TO 6 o 
IF( IN.EQ.3) GC TO 10 
IF( IN.EQ.5) GC TO 20 
IF( IN.EQ.l» GL TO 30 
GO TO 12 

30 XI = STCXK ITAB) 
U= Z( ITAB ). . . 
GO TO 12 

20 XI = STCXl(I-l) 
U= Z(i-l) 

GO TO 12 
10 XI = (STOXKI) + STOXK I-l) )/2.00 

U=(Z(I) + Z(I-i))/2.DC 
12 CONTINUE 
6 0( 1) = X(1)*(PZ4-(PZ8*PZ2*CDEXP(PZ7*T))*Xl*»(PZ2-1.0û) )) 

7 CALL STEP(£5) 
1=1-1 
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ST0X2( I) = X(l) 
G( n=-DEXP(-PZ3*T)*(Z( I )*»(-PZl) )-X( 1) 
IF(I.GT.l) GO TG 7 
TI =0.1D0 
NFEVAL = NFEVAL + 1 
RETURN 
END 

SUBROUTINE ST£P(*) 

. JMPkim--AEAL*8( A-H,_G-Z^ 
COMMON FfOPTSTPfPCfPSI,GSG,DFA,T,TI,X(10),D(10),STOX1(IOI),ST0X2(I 

101) ,STOU( 101) ,G( lOl) .SdOl) .GG( 101),Y( 101» fIN, lEND.ITAB, IX,NFEVAL, 
2NREINT,NV,K0UN 
DIMENSjON XS(10),DSJ10J,Z(10)_,XP_(1C) 
GU TO (10,50,1020,1040,1060,50,50,50,50,50,50,50,1320,5000),IN 

10 TO =T 
TS =t 
DO 20 1 = 1,NV 

XD(1) = X(I) 
20 DS(I) = 0(1) 

5000 H=TI 
1000 H2 = . 5D0*H_ 

H6 = H2/3.D0 
T=TS + H2 
DO 1010 1=1,NV 

XS(I) = XD(I) 
lOlC X( I) = XSd) +H2»DS(I) 

IN = 3 

RETURN 1 

1020 DO 1030 1 = 1,NV 
DO = D(I I  

Z( I ) = DS(I) • 2.DC*00 
1C30 X( I) .= .̂ S( I.) _+ H2*DD 

IN = 4 

RETURN 1 
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1040 T= T +H2 
00 1050 1=1,NV 

DO = 0(1) 

_ z ( I.La ZU) t. 2idDQ*M___ - - . 
1050 X(I) = XS(I) + H*DD 

IN = 5 

RETURN 1 
1060 00 107C 1=1,NV 
1070 Z(I) = H6*(Z(I)+D(II) 
1300 T0=T0 +H 

fs = TO 
T = TS 

DO 1310 1=1,NV 
XDd) = XD(IL + Z(I) .. 

1310 . X{ I ) = XD( I) 
IN = 13 _ 

RETURN 1 
1320 oo__l,33p 1 = 1,NV . _ , . . _ 
1330 DS(I) = D(I) 
50 CONTINUE . 

5020 IN = 14 
RE_TURN_ 
END 

FUNCTION SP(XX,YY,IMCDE) 

IMPLICIT REAL*8( A-H,C-Z) 
CONMCN F,CPTSTP,PC,PSI,GSQ,DFA,t,TI,X(10),D(10),STOXl(101),ST0X2(1 
101),STCU(101),0(101),S(I01),GG(101),Y( 101) ,1N, lEND,I TAB,IX.NFEVAL, 
2NREINT ,NV,KCUN 
DIMENSION XX(lOl),YY(101) 
IF(IMODE.EQ.l) GO TO 1 
IF( Ii10DE.EQ.2) GO TO 2 
SP = XX(1)/2.0D0 
DO 3 I=2,IEND 

3 SP = SP + XX(I) 
SP = SP + XX(ITAB)/2.D0 
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SP = TI*SP 
RETURN 

1 SP = XX(l)*YY(i)/2.D0 
DO 4 I=2,IEND 

4 SP = SP + XX( I r*YY( I ) 
. SP = _SP, t XX( I TAB)YY( I.TA8)/2.DO 
SP = TI*SP 

_RETURN_ _ 
2 SP = XXa)*XX( Ï)/2.D0 
DOS I=2,IEN0 
Z = XXd) 

5 SP = SP + Z*Z 
SP = SP + XX(ITAB)*XX(ITAB)/2.D0 
SP = TJ*SP __ 

RETURN 
END 

SUBROUTINE LINMIN(STPEST) 
mPLICIT_REAL*8(A-H,C-
COMMON STOXKIOI) ,STQX2(101J , STCU ( 101 ) ,G ( 1 Oil, SdOl ) ,F,OPTSTP,PC 

IPSIfGSQfDFA.NFEVAL,NREINT,T,TI,X(10),0(1C),NV,IN,IEND,ITAB 
342 FORMAT(«OALPHAs»,D14.6f2X,•6ETA=*,014.6,2X,'DFA=',014.6,2X,'DFB= 

1D14.6,2X,'F = ',D16.8,2X, • bPTSTP = • ,014. 6j 
34 3 FORMAT(• ALPHA=',014.6,2X,'BETA=',C14.6,2X,•CFA=•,D14.6,2X,'DFB= 

lpl4.6r2.X, 'F=^^ ' STPEST = ' ,014.6) 
344 FORMAT(• ALPHA = «,014.6 ,2X,«BETA=«,C14.6,2X,•OFA=•,D14.6,2X,•OFB= 

1014.6,2X,*F=',016.8,2X, •OPTSTP=•,014.6) 
IW0RK=C 
SSQ = SP(S,S,2) 
ALPHA=0.00 

30C FA=F 
301 BETA=ALPHA+STPEST 

CALL FANOG(BETA) 
OFB = SP(G,S,1) 
WRITE(6,343)ALPHA,BETA,DFA,DFB,F,STPEST 
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IF ( DFB .GT. 1.D18 ) GC TO 310 
IF ( FOGT.FA .OR. OFB.GT, C.DQ ) GO TO 302 
ALPHA = BETA 
DFA = DFB 
STPBST = 4.D0»STPEST 
GO TO 300 , .  .  

302 OLDF = F 
F8=F 

303 U = UFA + DFB + 3.00*1 (FA-FB) /  (BETA-ALPHA) > 
W = DSQRT I  ._U»U. -  ..0_F_A*DF8 ) 
FACTOR = < DFB + W -  U ) /  ( DFB -  DFA + 2.D0»W ) 
IF ( FACTOR.GE.1,00_.OR, FACTOR.LT. O.DO ) ,  GO TO 311 
OPTSTP = BETA -  FACTCR*( BETA -  ALPHA ) 

3.3.0 CALL_.F ANP.GJLOPIS.TP 1- -
GSQ = SP(G,G,2) 
WRI TE ( 6, 3421.ALPHA, BETA ,DF A^ DFB, F.OPTSTP 
OFOPT = SP(G,S,1) 
IF ( F.GT.FA .OR. F.GT.FB) GC TC 399 
IF ( DFOPT*DFOPT/(GSC*SSQ) .LT. C.0004D0 > RETURN S 

.^9__CmmLLE 
IF ( I  WORK.GE.5 .AND. DABS(OLDF-F).LE.1.D-07 ) GO TO 306 
NN = 0 
OLDF=F 
IWORK = I  WORK +1 
NREINT = NREINT + 1 
IF ( F .IN. FA _._QR,L_DF0E]UJ3J,C . 00 ) GO. TO 312 - . 
IF < OPTSTP .GT. .7D0*ALPHA+.300*8ETA ) NN=1 
ALPHA = OPTSTP 
FA = F 
DFA = UFOPT 
IF (NN.EQ.L) GC TO 303 
TSTEP = d.500*(ALFLWA+BBTAi . 
CALL FANDG(TSTEP) 
WRITE(6,344)ALPHA,BETA,CFA,DF8,F,OPTSTP 
DF = SP(G,S,1) 
IF ( F.GT.FA .OR. OF.GT.0.00) GC TO 320 

J=r 
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GO TO 303 

RETURN 
310 STPEST = C.LCA_*_S%REST 

GO TO 301 
311 WRITE( 6t  34C )  FACTOR — 

ÔPTSTP = .500 *  (  ALPHA + BETA )  
. GO TO 330 . . 

312 IF ( OPTSTP .LT. .3D0*ALPHA+.7D0*BETA ) NN=1 
BETA = OPTSTP 
FB = F 

DFB_= DFOPT 
IF (NN.EQ.l) GO TO 303 
TST£P = 0.50C»(ALPHA+BETA) 
CALL FANDG(TSTEP) 
WRITE!6,344)ALPHA,BETA,DFA»DFB,F,OPTSTP 
OF = SP(G.Sfl) 
If .J. F .LE .F̂  ̂Am._O.F,,LT,j(l,D0 ).. . .£a_tQ-321 _ , 

GO TO 303 ^ 
32 0 DFB = DF ; 

FB = F 

BETA = TSTEP 
GO TO 303 

321 OFA, D.F 
ALPHA = TSTEP 
FA = F 

GO TO 303 
340 FORMAT!' UNACCEPTABLE FACTOR CHOSEN FACTOR = ',012.5) 
341 FORMAT (1HG,32HLAST RESCRT EXIT TAKEN IN LINMIN) 
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SUBROUTINE SEAR 
IMPLICIT REAL*8(A-H,Ç-Z) 
COMMON F,GPTSTP,PCtPSI,GSC.UFA•T,TI•X(10 » tD(10 J,ST OX I(101),ST0X2(1 

101),STOU(101).G(101),S(101)tGG(101),Y(lOl) ,IN,IfcND11 TAB,IX,NFEVAL, 
2NREINT,NV,KGUN 
DIMENSION SIG( 101) ,HY(lCi),XS,( 7,101),XSS( 7,101) 
EQUIVALENCE(SIG(1),HY(1)) 
IF.J .IX .NE. KQWNJ GC T0_1__ 

IX=1 

WRITE(6,100) 
100 FORMAT(•ISYSTEM HAS BEEN RESTARTED') 

RETURN 
1 00 2 1=1,ITAB 

Y(I)= G(I)-GG(I) , 
2 SIG{I)= OPTSTP*S(I) 

II=IX-1 
A= SP(SIG,Y,l)**(-O.5D0) 
DO 3 1=1,ITAB 
XS(11,I)= A*SIG(I) 

3 HY(I)=Y{I) 

IF(II.EQ.l) GO TU 12 
111 = 11-1 
00 4 N=1,III 

SWITCH XS(N,I) TO S(I) ANÙ XSS(N,I) TO GG(I) SINCE THEY ARE NO LONGER NE 
DO 6 1=1,ITAB 
S(I)=XS(NtI) 

5 GG(I)=XSS(N,I) 
A= SP(S,Y,1) 
B= SP(GG,Y,1) 
DO 6 1 = 1,I TAB 

6 HY(I)=HY(I)+ A*SfI)- 8*GG(I) 

4 CONTINUE 
12 CONTINUE 

A= SP(HY,Y,l)**(-0.500) 
DO 7 1=1,ITAB 

7 XSSIII,I)=A*HY(I) 
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00 8 1=1,iTAB 
8 S ( I ) =-G( I I -

DO 9 N=1»II 
SWITCH XS(N,n TO Yd) ANC XSS(N,I) TO HYd) SINCE THEY ARE NOT NEEDED 

00 10 1 = 1,1 TAB 
Y( 11= XS(N,n 

IC HY(n = XSS(N,I) 
A= SP(Y,G,1» 
13= SP(HY,G,I) 
DO 11 I=1,ITAB 

11 S(I)= S(I)- A*Y(I)+ B*HY(I) 
9 CONTINUE 

RETURN 
END 



www.manaraa.com

198 

IX. APPENDIX B 

A computer code for solving problem T-3 using the . 

conjugate gradient algorithms and penalty functions to 

treat terminal state constraints. 
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IMPLICIT REAL*8(A-H,0-Z) 

COMMON STOXK 101 » ,ST0X2(101) ,STGU ( 101 ) ,G ( 1 CI ), SdO 11 ,F,OPTSTP,PC, 
1PSI,GSQ,0FA,NFEVAL,NREINT,T,TI,X(10),D(10 J,NVtIN,I END,ITAB 
COMMÛN/NF/ PZl,PZ2,PZ3,P24,P25,PZ6,PZ7,PZ8,PZ1G 
PZ1=0.9 
PZ2=C.6 
PZ3=0.03 

. , PZ4=C# C5 
PZ5=0.C1 
PZ6=C.C25 
PZ7=PZ6*(1.D0-PZ2)+PZ5 
PZ8=0. 8419 
PZIû=l.DO/(l.DO-PZl) 
PC=3.00 
I END = 100 
I TAB = I END + 1 
IMAX - 16 
TI =.100 
NV= 1 
ISTEP =0 
NFEVAL = 0 
NREINT = 0 
STOXK U = 15.00 
STOUd) = 2.2500 
T2Z = TI 
DO IG I = 2,101 
STOUd) = 2.2500 +• .35D0*T2Z 
T2Z = T2Z + TI 

IC S(I) = C.OO 
CALL FANDGCO.DOJ 
GSQ = SP(G,G,2) 
STPeST = .100/QSQRT{GS.Q) 

1 CONTINUE 
DO 2 1=1,I TAB 

2 S(n = -G(I » 
DFA =-GSQ 
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5 CONTINUE 
.  OLjQGS 
CALL LINMIN( STPESn 
ISTEP = ISTEP * 1 
00 3 I=1,ITA8 

3 STOUd) = STOU(I) + CPTSTP*S(I) 
GSQ = SP(GfGt2) 
WRI TE J6, 111 _ I STEPf.NFE_VALf.NRE I NT, F ,GSQ, PS I ,(I, STOX 1 ( I ), ST0X2( 1). 

1 STOUd) ,G( 1) fl = ltl01,4) 

WRITE (6,171 OPTSTP 
17 FORMAT (/// 015.7//////) 

IF(ISTEP.EQ.A) GO TO 50 
IFdSTÉP.EQ.e» GO TO 50 
IF ( G SJJ _.,LE , J,j,Dr.04 ) .GO._IQ. 3Q . 
IF(ISTEP.EQ.IMAX) GO TC 3C 

18 STPEST = 2.DO*OPTSTP 
IF ( STPEST .GT. l.DO) STPEST = .500 

BETA = GSQ/OLDGS . 
00 4 I=1,1TAB 

. 4 S( I ).I ) +..Ô.Ê.JA«SJ IJ 
DFA= SP(G,S,1) 
IF (DFA.GT.O.DO) GO TC 6 -
GO TO 5 

GÔ'TO T 
30 WRITE(6,40) 
4C FORMATdX»* TIME OUTPUT SAVINGS') 

T=O.DO 
DO 35 1=1,1 TAB,4 
Y1=&EXP(PZ7*T)*PZ8*(STCX1(I))**PZ2 
Sl=( Yl-STOUd) )/Yl 
WRITE(6,4l) T.Yi.Sl 

41 FORMATdH ,3F12.6) 
35 T = T + 4.DC*TI 
50 WRITË(6,51) 
51 FORMATdX,* TIME • ,20X, «HAM LTGN lAN* ) 
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TY1=C.DC 
DU 60 I =1,1 TAB,10 
Hl= -OEXP(-PZ3*TYl)*PZiO*(STOU(U)$*(!.DC-PZl) 
H2= STCX2(I)*(PZ8*DEXP(PZ7*TY1)*(ST0X1(I))**PZ2-ST0U(I)-PZ4*ST0X1( 
II)) 
H=H1+H2 . , 

WRITE!6,55) TYl.H 
55 FURMAT(iX,F12.6,036.10) 
60 TY1=TY1+1C.DG*TI 

IF (GSQ .LE. l.D-04) STOP 
IF ( ISTEP .EG. I MAX ) STOP 
GO. TO 18 

11 FORMAT (///1H0,8HSTEP.N0.,5X,20HFUNCTI0N EVALUATIONS,5X,16HREINTER 
IPOLATI0NS,20X,1HF,20X,3HGSQ,20X,3HPSI/1HC,15,118,123,036.10,020.6, 
202 3.6/lH0,32X,5HIN0EX,13X,2HXl,18X,2HX2,19X,IHU,19X,IHG//(IH ,136, 

33X,4020.8)1 
12 FORMAT CCUPHILL DIRECTION OF SEARCH—A STEEPEST DESCENT STEP WILL 

. . 1 0 i.. - .........M.-... . 
END o 

H 

SUBROUTINE FANDGITSTEPI 

. .. IMPL IÇ IT, .REAL*8J A-H, C-Z) 
COMMON STOXKIOl) ,STGX2(101) ,ST0U(101) ,G{ 101 ),S( 101 » , F, OPTSTP, PC, 
IPSI,GSQ,UFA,NFEVAL,NREINT,T,TI,X(10),D(IC),NV,IN,I END,ITAB 
COMNON/PF/ PZ1,PZ2,PZ3,PZ4,PZ5,PZ6,PZ7,P28,PZ1C 
DIMENSION Z(lOl) 

C SAVE THE STORED CONTROL TABLE BY TRANSFERRING ITS CONTENTS TO Z 
C TABLE Z IS USED AS THE CONTROL IN THIS SUBROUTINE 
C 

DO 1 I=1,1 TAB 
1 Z<I) = STOU(I) * TSTEP*S(I) 

C 
C INTEGRATE THE STATE SYSTEM 
C 

T= O.DO 
X(1) = 15.00 
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1 = 1  
IN= 1 

2 IF(IN.EQ.4 .CJR. IN.EC.13) GO TO 3 
11N. EA, 3) UpiZj I )+ Z( ! + l) )/2. DO 

IF(IN.EC.5) U= Z(I+1) 
IF(IN.EQ.1) U= Z(I) 

3 XI =X( 1) 
0( 1 ) =.( PZ8*DEXP (PZ7*T)*(X1) *»PZ2-U-PZ4*X1 ) 

4 CALL STEP(&2) 

STOXK I) = X(l) 

IFd ,LT._ ITABJ. GO TQ 4 
PSI = X(l) - 29.16D0 

PCPSI r(PC)*PSI 
F=(PZ1C*(Z(1)**(1.DC-PZ1)))/2.D0 
p 2 ' p _ 
TR = C.DÔ 
00 40 I=2,IEN0 
TK = TR + TI 

4C F=F-(DEXP(-PZ3*TR))*PZ10*(Z(I)**(1.DO-PZ1)) 
TR=TR+T1 
F=F_-( D.EXP_( -PZ 3 *TR ) *P Zl Q* I Z {I T AB ) •* 11. DO-PZ1 ) J ) /2 .DO 
F = TI*F + .500* PCPSI*PSI 

INTEGRATE ADJOINT EGUATICNS ' 
CALCULATE THE GRADIENT OF THE HAMILTONIAN 

.. _TLt"- . 1—C..00_.—- - -—- - — - -
TI = -O.IDO 
X(l) =PCPSI 
ST0X2(ITABI = PCPSI 
G(ITAB)=-DEXP(-PZ3*T)*(ZtITAB)**(-PZl))-X(1) 
1 = ITAB 

I .... 
5 IF(IN.EQ.4 .OR. IN.EC.13) GO TO 6 

IF( IN.EQ.3) GO TO 10 
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IF( IN.EQ.5) GC TO 2C 
,IF( m.EQ. 1 ) GC TG .30 
GO TO 12 

30 XI = STCXK ITABi . . 
U= Z(ITAÛ) 

GO TO 12 
20 XI = STCXKI-1) 

u= z{L-i) 
GO TO 12 

10 XI = (STOXKI) + STOXK I-l) )/2.DO 
U=(Z( I I + Z( I-l) )/2.00 

12 CONTINUE 
6 0(1)=X(1)*(PZ4-(PZ8*PZ2*(CEXP(PZ7*T))*X1**(PZ2-1.00))) 

7, CALL . STEP.( S5J. 
1 = 1-1 

ST0X2( I ) = XII ) 
G(I)=-0EXP(-PZ3*T)*(Z(I)**(-PZ1))-X(1) 
IF(I.GT.l) GO TO 7 
TI =0.100 

NFEVAL ._= NFEVAL„.t-l 
RETURN 
END 

SUBROUTINE STEP!*) 
IMPLICIT REAL*8(A-H,0-ZI, INTEGER (I-N) 
COMMON STOXKlOl),STCX2(101),ST0U(101),G(101),S(101),F,OPTSTP,PC, 
1PSI,GSQ,DFA,NFEVAL,NREINT,T,TI,X(10),D(10),NV,IN,I END,ITAB 
DIMENSION XS(IU),0S(10),Z(10),X0(1C) 
GO TO (10,50tl02C,1040,1060,50,50 ,50,50,50,50,50,1320,5000),IN 

10 TO =T 
TS =T 
DO 20 1=1,NV 

XD(I) = X(I ) 
20 DS(I) = 0(1) 

5000 H=TI 
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1000 H2 = .5D0*H 
H6 = H2/3.00 
T=TS • H2 

DO 1010 1=1,NV 
XS(I) = XD(I» 

1010 X{n = XS(1) +H2*DS(I) 
IN = 3 

RETURN 1 

1020 DO 1030 1=1,NV 
OD = 0(1) 

Z(I) = DSd) + 2.00*00 
1030 X(I) = XS<I) + H2*DD 

IN = 4 

RETURN 1 
1040 T= T +H2 

DO 1C5C 1 = 1,NV 
DD = 0(1) 
2(1) = Zil) + 2.D0*DD 

.1P50__ X( I ) = XS(U. +_,H.»DJ3 
IN = 5 

RETURN 1 
106C DO IC70 1=1,NV 
1070 Z(I) = H6*(Z(I)+0(I)) 
1300 TD=TD +H 

T = TS 

DO 131C 1=1,NV 
XD(I) = XD(I) + Z(I) 

1310 X( I) = XD( I) 
IN = 13 

RETURN 1 
1320 DO 133C 1 = 1,NV 
1330 DSCI) = D(I) 
502 0 IN = 14 
50 CONTINUE 

RETURN 
END : 
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FUNCTION SP(XX,YY,IMCD£» 
IMPLICIT REAL*8(A-H,C-Z) 
COMMON STOXKlOl) tSTCX2(101) iSTCUdOl) ,G(101),S(lOll,F,OPTSfp 

1PSI,GSQ,DFA,NFEVAL,NREINT,T,TI,X(10),D(10),NV,IN,IENDtITAB 
blMENSiON XX(IOI),YY{ici) 
IF( IMOOE.EQ. l) . GO TC 1 , 
IF(IM00E.EQ.2) GO TO 2 
SP = XX/11/2.000 _ 
DO 3 I=21 I END 

3 SP = SP + XX(I) 
SP = SP + XX(ITAB)/2.D0 
SP = TI*SP 

RETURN 
1 SP = XX(1)*YY(1)/2.D0 
00 4 1=2,IÉND 

4 SP = SP + XX(I)*YY(I) 
SP = SP + XX(ITAB)*YY(ITAB)/2.D0 
SP = TI*SP 
RETURN 

2_ SP = XX{1)*XX( 1J/2.P0 
DO 5 I=2,IEND 
2 = XX( I) 

5 SP = SP + Z*Z 
SP = SP + XX(ITAB)*XX(ITAB)/2.00 
SP = TI*SP 

END 
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SUBROUTINE LINMIN(STPËSTI 

IMPLICIÎ REAL*8(A-H,C-Z) 
COMMON StOX I ( 101 ) f ST OX 2 ( 101 ) • St GÙ ( 10 i ) IG "(101 I, S ( 101 ) , F , OPT STP . PC 
lPSI»GSQiOFA,NFEVAL.NREINT,T,TI,X(10),0(1G),NV,IN,IEND,ITAB 

342 FORMAT('OALPFA=',D14.6,2X,'6ETA=',C14.6,2X,'DFA=',D14.6,2X,*DFB= 
1D14.6,2X,'F=',D16.8,2X, 'UPTSTP=',014.6) 

34 3 FORMAT(• ALPHA = «,D14.6 ,2X,'BETA=*,D14.6,2X,'CFA=',D14.6,2X,'0FB= 

_.1P14, 6,_2)( ,  *F=r i016_.8 
344 FORMAT(• ALPhA=',D14.6,2X,'6ETA=',C14.Ô,2X,•OFA=•#014.6,2X,•DFB= 

1D14.6,2X,'F=',D16.8,2X, '0PTSTP=',D14.6I 
IW0RK=C 
SSQ = SP(S,S,2; 
ALPHA=O.DO 

30 C FA=F 
301 8ETA=ALPHA+STPEST 

CALL FANDG(BETA) 
DFB = SP(G»S,1) 
WRITE(6,343)ALPHAtBETAfDFA,DFB,FtSTPEST 
IF ( DFB .GT. 1.D18 ) GC TO 310 
IF ( F.GT.FA .OR. DFB.GT. O.DO ) GO TO 302 
ALPHA = BETA 
DFA = DFB 
STPfcST = 4.DC*STPEST 
GO TO 300 

302 OLDF = F 
FB=F 

303 U = UFA + DFB + 3.D0*( (FA-FB) / (BETA-ALPHA) ) 
W = DSQRT( U*U - OFA+DFB ) 
FACTOR = ( DFB + « - U ) / ( OFB - DFA + 2.D0*W ) 
IF { FACTOR.GE.1.00 .OR. FACTOR.LT. 0.00 ) GO TO 311 
OPTSTP = BETA - FACTCR»( BETA - ALPHA ) 

330 CALL FANUG(UPTSTP) . . 
GSQ = SP(G,G,2I 
WRITEt6,342)ALPHA,BETA,DFA,DFB,F,OPTSTP 
DFOPT = SP(G,S,1» 
IF ( F.GT.FA .OR. F.GT.FB ) GC TC 399 
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IF ( DFOPT*DFOPT/(GSG*SSQ) .LT. C.000400 ) RETURN 
3.99._C0N%imE 

IF ( I WORK.GE.5 .AND. DABS(OLOF-F).LE•1.0-07 ) GO TO 306 
NN = 0 
OLDF=F 
IWORK = I WORK + 1 
NREINT = NREINT +1 
IF ( F.GT.FA .OR. OF CPT.GT.C.00) GO TO 312 
IF ( OPTSTP .GT. .700*ALPHA+.3D0*BETA J NN=1 
ALPHA = OPTSTP 
FA = F 
OFA = OFUPT 
IF (NN.EQ.l) GC TO 303 
T_iT£P = .-y.»5.0Q*.(ALRHA±ô£IAl . . 
CALL FANDG(TSTEP) 
WRIT&(6,344)ALPHA,BETA,CFA,DFB,F,OPTSTP 
OF = SP(G,S,1) 
IF ( F.GT.FA .OR. OF.GT.0.0(1) GC TO 320 
GO TO 303 M 

RETURN 
310 STPEST = C.ICO. * 5IPEST 

GO TO 301 
311 WRITE! .6, 34C )_.FACTOR, 

OPTSTP = .500 * ( ALPHA + BETA ) 
GO TO 330 

312 IF ( OPTSTP .LT. .3DC*ALPHA+.700*BETA ) NN=1 
BETA = OPTSTP 
FB = F 
OFB = OFGPT 

IF (NN.EQ.l) GO TO 303 
TSTEP = 0.50G*(ALPHA+BETA) 
CALL FANUG(TSTEP) 
WR ITE(6,344)ALPHA,BETA,CFA,OFB,F.GFTSTP 
OF = SP(G,S,1) 
IF ( F.LE.FA .ANO. OF.LT.C.OO .) GO.TO .321 
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GO TO 303 
320 DFB = DF 

FB = F 
BETA =  TSTÊP 
GO TO 303 

ÂLPHÂ^ = TSTËP 
FA = F 
GO TO 303 

340 FORMAT(• UNACCEPTABLE FACTOR CHCSEN FACTOR = ' ,012.5) 
341 FORMAT ( IHG,32HLAST RESCRT EXIT TAKEN IN LINMIN) 

rj 
o 
00 
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